Содержание

Введение	.4
1 Лабораторная работа №1. Запуск и конфигурирование ОС	.5
2 Лабораторная работа №2. Управление процессами. Изучение работы	
системных функций	.6
3 Лабораторная работа №3. Команды управления процессами. Сигналы,	
каналы. Взаимодействие процессов систем	.9
4 Лабораторная работа №4. Способы организации ввода-вывода.	
Произвольный доступ к файлу. Библиотека стандартного ввода-вывода	
систем	
5 Лабораторная работа №5. Файловая система. Доступ к файлам. Работа с	
файлами и каталогами. Изучение типов файлов. Поиск системных журналов	
систем	16
6 Лабораторная работа №6. Структура реестра ОС. Изучение работы	
реестра систем	22
7 Лабораторная работа №7. Изучение базовых прав доступа. Переход в	
режим суперпользователя. Изучение базы данных пользователей.	
Добавление и удаление пользователей систем	33
8 Лабораторная работа №8. Управление сетью. Сетевые службы. Изучение	
основных команд для работы в сети систем	37
9 Лабораторная работа №9. Обеспечение безопасности операционной	
системы. Изучение программных и системных угроз и типов сетевых атак	
систем	44
10 Лабораторная работа №10. Архивирование. Восстановление	47
11 Лабораторная работа №11. Реализация простых сценариев	51
12 Лабораторная работа №12. Реализация сложных сценариев	50
Список литературы	57

Введение

В настоящий сборник включены лабораторные работы, целью которых является изучение студентом принципов безопасной работы операционных систем (ОС) Linux и Windows.

Данная дисциплина предназначена для высших учебных заведений, ведущих подготовку по специальности 5В100200 - Системы информационной безопасности.

Программа дисциплины «Безопасность операционных систем» предусматривает изучение методов и средств управления процессами режимами работы ВМ, систем и сетей, режимами управления вводомвыводом информации; файловой системой; изучение способов организации и защиты файлов, методов распределения и защиты памяти, рассмотрены принципы построения и защита от сбоев и несанкционированного доступа, а также средств управления многопроцессорными системами и сетями.

В рамках данного пособия проводится укрепление знаний студента о функциональных возможностях и адаптации ОС под конкретные задачи грамотного администрирования и правильного распределения ролей участия взаимодействия всех пользователей в системе и возможности управления ограничением воздействия на определенных этапах вмешательства в систему.

В настоящий сборник включены лабораторные работы, целью которых является обучение методологическим основам принципов построения и функционирования средств реализации системного программного обеспечения вычислительных машин, систем и сетей и организация ее защиты.

Материал по каждой лабораторной работе включает в себя цель, рабочее задание, методические указания для выполнения работы и контрольные вопросы для самостоятельной подготовки.

Этапы выполнения лабораторной работы следующие: изучение теоретической части, выполнение рабочего задания, создание отчета и защита работы.

Все лабораторные работы ориентированы на проявление элементов научно-исследовательской деятельности студентов.

Выполнение каждой лабораторной работы должно завершаться оформлением отчета по «Стандарту организации учебно-методические и учебные работы СТ НАО 56023-1910-04-2014». Выполненная работа и оформленный отчет защищается у преподавателя.

Выполнение лабораторных заданий дает возможность выработки навыков и знаний у студентов.

1 Лабораторная работа №1. Запуск и конфигурирование ОС

Цели работы: изучение работы с физическими и логическими разделами диска; приобретение навыков настройки ОС.

1.1 Рабочее задание

- 1. Скачать и установить виртуальную машину Sun или VmWare.
- 2. Выбрать дистрибутив *Linux* и установить на виртуальную машину.
- 3. Установить *Windows* на виртуальную машину.
- 4. В каждой ОС сделать *snapshot* №1 (первоначальный снимок ОС).
- 5. Произвести в каждой ОС в виртуальной машине настройку:
- настроить сеть, обновить репозитории/источники данных;
- скачать и установить шрифты, темы, сменить оформление;
- установить в Linux программы midnight commander, nano, gedit;
- установить в Windows текстовой редактор с цветной подсветкой.
- 6. В каждой виртуальной машине сделать *snapshot* №2 (снимок ОС №2).
- 7. Восстановить по *snapshot* №1 состояние OC.
- 8. Восстановить по *snapshot* №2 состояние ОС.

1.2 Методические указания к выполнению лабораторной работы

Установить ОС можно:

- а) на виртуальную машину: выбирается и устанавливается в *Windows* виртуальная машина. Затем создается новая машина и в качестве образа ОС ставится выбранная ОС: файл вида *.iso;
- б) на раздел жесткого диска: при разбиении разделов можно использовать встроенные средства Windows (правая клавиша «Komnbomep» «Ynpaвление дисками»). Или программа $Partition\ Magic,\ Acronis\ disk\ director\ suite$. После создания раздела надо перезагрузиться и в начале загрузки удерживать нажатой клавишу «Delete» чтобы зайти в BIOS и выставить первичной загрузкой CD (если планируется установка с CD-диска) или USB (если планируется установка с flash). После сохранения изменений и выхода из BIOS начинает считываться сменный носитель и начинается установка.

В процессе установки студенту для входа в систему нужно придумать логин (фамилия_имя), пароль и выбрать оболочку.

Зафиксируйте, каким образом у вас произошло разделение дискового пространствавы в каждой из установленных ОС.

- 1 Какие папки находятся в корневом разделе, что в них содержится?
- 2 Что такое *swap*?
- 3 Какие файловые системы вы задействовали при установке разных дистрибутивов и на каких разделах, какое разбиение дисков вы произвели?

2 Лабораторная работа №2. Управление процессами. Изучение работы системных функций

Цель работы: приобретение навыков работы с процессами.

2.1 Рабочее задание

Выполнить задания по управлению процессами в Linux:

- 1) Запустить игру и файловый менеджер. Переназначить им приоритеты. Завершить все вышеназванные процессы в одной консольной строке.
- 2) Открыть вторую и третью консоль из первого терминала. Закрыть первую и третью консоли из второго терминала.
- 3) Вывести информацию о состоянии процессов. Отфильтровать по состоянию, перевести из одного режима в другой (ps, pstree, top, bg, fg).
- 4) Назначить приоритеты запускаемым задачам в фоновом режиме, изменить приоритеты запущенных процессов (*nice*, *renice*).

2.2 Методические указания к выполнению лабораторной работы

Все запущенные процессы имеют уникальные номера - *PID*. Команды *Linux*, необходимые для мониторинга работы ОС (все показания выводятся на экран в реальном времени, а число после команды означает интервал между выводом информации):

- *top* информация в реальном времени о процессах, потребление ОЗУ;
- ps показать все процессы;
- ps aux показать все загруженные процессы;
- echo \$\$ показать PID оболочки;
- fuser -va 22/tcp показать PID процесса, использующий порт 22;
- fuser -va /home показывает PID процесса, имеющего доступ к /home;
- *lsof/home* список процессы, которые используют /home;
- kill 1234 «завершить» процесс с PID 1234;
- killall <имя_программы> «убить» процессы по имени программы;
- *nice* и *renice* назначение и переназначение приоритетов процессам.
- ps axu / grep test все процессы, запущенные от пользователя test.

Возможность для пользователя задавать значение приоритета его собственных процессов определяет отношение к другим пользователям системы, ведь процесс - это набор правил, которым руководствуется данная программа при использовании выделенного процессорного времени, памяти и ресурсов ввода/вывода. Каждый процесс, запущенный в системе, имеет свой *ID* (*PID*), по которому его можно отслеживать. Ядро позволяет собирать информацию о каждом процессе, которая включает, но не ограничивается:

- статус процесса (работает, спит, зомби или остановлен);
- приоритет выполнения процесса;
- информация об используемых ресурсах и- владелец процесса;
- сетевые порты и файлы, открытые процессом и т.д.

Создаем процесс yes в терминале, перенаправив вывод в /dev/null: yes > /dev/null &

[1] 5997

Воспользуемся командой, чтобы извлечь информацию о процессе: ps -l

FS UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD

0 S 1000 5830 3283 0 80 0 - 6412 wait pts/0 00:00:00 bash

0 R 1000 5997 5830 99 80 0 - 1757 - pts/0 00:00:09 yes

0 R 1000 5998 5830 0 80 0 - 2399 - pts/0 00:00:00 ps

Из этой таблицы можно узнать, что:

F - FLAG: процесс запущен без привилегий суперпользователя. В противном случае, мы могли бы увидеть число 4 или сумму 1 и 4.

S - STATE: процесс в настоящее время работает.

UID - ID пользователя, инициализировавшего процесс.

PID - ID процесса нашей команды yes 5997.

PPID - Parent Process ID. Это *ID* родительского для нашей команды yes процесса. В нашем случае это bash с *PID* 5830.

C - загрузка процессора, выражается в %.

PRI - Приоритет процесса, большее значение значит меньший приоритет.

NI - Значение nice, которое находится в диапазоне от -20 до 19. Большее значение означает меньший приоритет.

Принцип работы планировщика *Linux* (для ядра версии >= 2.6) вытесняющий, то есть способность ядра выбирать среди всех заданий то, которое имеет наивысший приоритет. Далее, ядро делит списки приоритета на задачи реального времени и пользовательские задания, ранжирующиеся от 1-100 и 101-140 соответственно. Далее, ядро выделяет задачам с более высоким приоритетом больший квант времени, а задачам с меньшим приоритетом -меньший квант времени, который в среднем составляет 200 и 10 мс соответственно, т.е. каждое задание допускается к выполнению только, если у него остается какая-либо часть времени. Поэтому меньший отрезок времени для выполнения означает, что процесс получает меньше времени в очереди выполнения и получает меньше ресурсов. Когда отрезок времени процесса заканчивается, он помещается в очередь выполнения с истекшим временем: затем его приоритет пересчитывается: и он снова помещается в активную очередь выполнения. Важно помнить, что обе очереди выполнения содержат списки задач, отсортированных по их приоритету.

Чтобы установить значение *nice* ниже нуля, требуются права суперпользователя. В противном случае будет установлено значение 0. Если попробовать задать значение *nice* -1 без прав *root*:

\$ \$ nice -n -1 yes > /dev/null &

[1] 5285

nice: cannot set niceness: Permission denied

\$ ps -l

```
FS UID PID PPID C PRI NI ADDR SZ WCHAN TTY
                                                       TIME CMD
0 S 1000 3383 3380 0
                     80 0 - 6447 wait
                                                     00:00:00 bash
                                               pts/0
0 R 1000 5285 3383 95 80 0 - 1757 -
                                               pts/0
                                                     00:00:07 yes
0 R 1000 5295 3383 0 80 0 - 2399 -
                                               pts/0
                                                     00:00:00 ps
     Поэтому, чтобы задать значение nice меньше 0, необходимо запускать
```

программу как root или использовать sudo.

nice -n -1 yes > /dev/null &

[1] 5537

ps -l

F S	UID	PID	PPID	C	PRI	NI	ADDR SZ	WCHAN	TTY	TIME	CMD
4 S	0	5428	3383	0	80	0 -	14430 wait		pts/0	00:00:00	su
0 S	0	5436	5428	1	80	0 -	7351 wait		pts/0	00:00:00	bash
4 R	0	5537	5436	87	79 -	1 -	1757 -		pts/0	00:00:04	yes
4 R	0	5538	5436	0	80	0 -	2399 -		pts/0	00:00:00	ps

Пробуем изменить значение *nice* у запущенной программы с помощью команды *renice* (есть работающая программа yes со значением *nice* 10):

ps -l

```
F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY
                                                       TIME CMD
0 S 1000 3383 3380 0 80 0 - 6447 wait
                                                pts/0
                                                      00:00:00 bash
0 R 1000 5645 3383 99 90 10 - 1757 -
                                                pts/0
                                                      00:00:04 yes
0 R 1000 5646 3383 0 80 0 - 2399 -
                                                pts/0
                                                      00:00:00 ps
     Изменим значение пісе на 15:
```

renice -n 15 -p 5645

5645 (process ID) old priority 10, new priority 15 ps -l

```
F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY
                                                      TIME CMD
0 S 1000 3383 3380 0 80 0 - 6447 wait
                                               pts/0
                                                     00:00:00 bash
0 R 1000 5645 3383 99 95 15 - 1757 -
                                                     00:00:31 yes
                                               pts/0
0 R 1000 5656 3383 0 80 0 - 2399 -
                                                     00:00:00 ps
                                               pts/0
```

Согласно правилам, обычный пользователь может только увеличивать значение nice (уменьшая приоритет) любого процесса. Если попробовать изменить значение *nice* с 15 до 10, получим следующее сообщение об ошибке:

renice -n 10 -p 5645

renice: failed to set priority for 5645 (process ID): Permission denied

Команда renice позволяет суперпользователю изменять значение nice процессов любого пользователя. Это делается с помощью ключа -и. Команда изменяет значение приоритета всех процессов пользователя на -19:

renice -n -19 -u lubos

ID old priority 0, new priority -19. 1000

- 1 Зачем нужны приоритеты?
- 2 Какие режимы работы процессов существуют?

3 Лабораторная работа №3. Команды управления процессами. Сигналы, каналы. Взаимодействие процессов систем

Цель работы: приобретение навыков работы с процессами и сигналами, каналами.

3.1 Рабочее задание

- 1. Привести примеры в *Linux* работы функций *fork(), exec(), signal(), wait(), jobs, mkfifo, nohup, pipe().*
 - 2. Настроить планировщик *Linux* на запуск двух задач по расписанию.
 - 3. Выполнить задания по управлению процессами в Windows:
- 1) Просмотреть в *Windows* дерево процессов утилитой *Tlist.exe*. Запустить родительские и дочерние процессы. Сделать соответствующие выводы.
 - 2) Просмотреть в Windows список установленных драйверов устройств.
 - 3) Разобрать в Windows работу утилиты Msconfig.

3.2 Методические указания к выполнению лабораторной работы

Для выполнения пункта 2 рабочего задания надо понимать, что *cron* — демон, занимающийся планированием и выполнением команд, запускаемых по определенным датам и в определенное время. Команды, выполняемые периодически, указываются в файле /etc/crontab (не через команду *cron*, а путем внесения строк в файл *crontab* или с 28 использованием одноименной команды *crontab*). Команды, которые должны быть запущены лишь однажды, добавляются при помощи *at*. Синтаксис строки в *crontab*: каждая команда в файле *crontab* занимает одну строку и состоит из шести полей:

минута час день_месяца месяц день_недели команда

Допустимые значения: минута от 0 до 59; час от 0 до 23; день_месяца от 1 до 31; месяц от 1 до 12 (или буквы от jan до dec, независимо от регистра); день недели от 0 до 6 (0 это воскресенье или три буквы от sun до sat).

Если в соответствующее поле поместить символ *, это будет соответствовать любому возможному значению. Для полей можно указывать диапазоны значений, разделенных дефисом, например, вывод "Hello World!" в 11:00 в 6,7,8,9 дни января, февраля и марта:

0 11 6-9 1-3 * echo "Hello World!".

А вывод "Hello World!" каждый четный час каждого понедельника:

0 */2 * * mon echo "Hello World!"

Для выполнения задания пункта 3 необходимо скачать установочный файл Windbg (Debugging Tools for Windows) по ссылке с сайта Microsoft: http://msdl.microsoft.com/download/symbols/debuggers/dbg_x86_6.11.1.404.msi.

В процессе установки возникает окно, показанное на рисунке 1.

Рисунок 1 – Принскрин при установке программного обеспечения

1) После установки программного обеспечения, необходимо для просмотра дерева процессов вызвать командную строку, напечатать «*cmd*» и нажать клавишу *Enter* (рисунок 2).

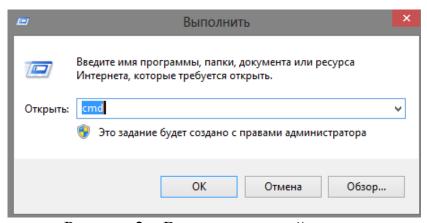


Рисунок 2 – Вызов командной строки

Открывается командная строка *Windows*. Набираем команду для перехода в только что созданную директорию (рисунок 3): cd "C:\Program Files\Debugging Tools for Windows (x86)".

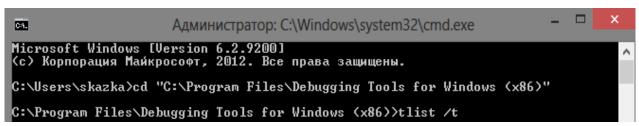


Рисунок 3 – Переход в созданную директорию

Дерево процессов показывается утилитой «Tlist.exe» при ключе /t. Образец вывода команды показан на рисунке 4.

```
C:\Program Files\Debugging Tools for Windows (x86)>tlist /t
System Process (0)
System (4)
smss.exe (368)
csrss.exe (480)
wininit.exe (548)
services.exe (644)
svchost.exe (772)
BTStackServer.exe (4152) BTW Stack Server
SppExtComObj.Exe (6644)
svchost.exe (844)
svchost.exe (892)
svchost.exe (892)
svchost.exe (976)
taskeng.exe (3664)
svchost.exe (1024)
igfxCUIService.exe (1096)
svchost.exe (1124)
WUDFHost.exe (1584)
dasHost.exe (2420)
```

Рисунок 4 – Пример части работы команды

Взаимоотношения процессов (дочерний-родительский) *Tlist* показывает отступами. Имена процессов, родительские процессы которых на данный момент завершились, выравниваются по левому краю, потому что установить их родственные связи невозможно - даже если процессы-прапредки еще существуют. *Windows* сохраняет идентификатор только родительского процесса, так что проследить его создателя нельзя. Чтобы убедиться в этом, выполните следующие операции:

а) откройте окно командной строки. Наберите *start cmd* для запуска второго окна командной строки, расположите окна рядом (рисунок 5);

Рисунок 5 – Запуск второго окна командной строки

- б) откройте диспетчер задач (Ctrl+Alt+Del- Диспетчер задач);
- в) переключитесь на второе окно командной строки. Введите *«mspaint»* для запуска *Microsoft Paint* (рисунок 6);

Рисунок 6 - 3апуск во втором окне *Microsoft Paint*

 Γ) щелкните второе окно командной строки, введите *«exit»* и нажмите *Enter* (рисунок 7);

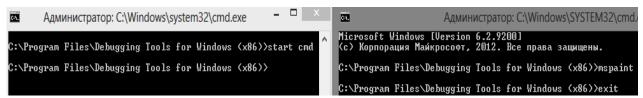


Рисунок 7 – Выход во втором окне

д) заметьте, что окно *Paint* остается, даже несмотря на то, что родительский процесс *cmd2* завершился. Переключитесь в диспетчер задач и откройте его вкладку «Процессы». Найдите задачу «Обработчик команд *Windows*», переключитесь на вкладку «Подробности» и щелкните процесс *Cmd.exe* правой кнопкой мыши и выберите команду «Завершить дерево процессов» (рисунок 8);

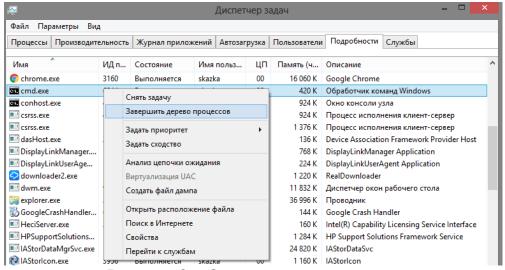


Рисунок 8 – Отслеживание процесса

е) в окне «Предупреждение диспетчера задач» (рисунок 9) щелкните «Завершить дерево процессов». Теперь и первое окно командной строки исчезнет, но вы по-прежнему сможете наблюдать окно *Paint*, так как оно является внуком первого из завершенных процессов «Командной строки». А поскольку второй (родительский процесс для *Paint*, т.е. *cmd2*) тоже завершен, связь между родителем и внуком потеряна.

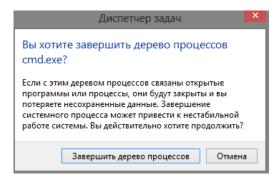


Рисунок 9 – Завершение процесса

2) Просмотр установленных драйверов устройств.

Вывести список установленных драйверов: Пуск \rightarrow Выполнить в появившейся командной строке набрать *msinfo32*. Выбираем Программная среда \rightarrow Системные драйверы (рисунок 10).

В этом окне выводится список драйверов, определенных в реестре, а также их тип и состояние - работает или нет. Драйверы устройств и процессы Windows-сервисов определяются в разделе реестра *HKLM\SYSTEM\ CurrentControlSet\Services*. Однако они отличаются по коду типа. На вкладке «Сведения о системе» можно найти реальную информацию об ОС.

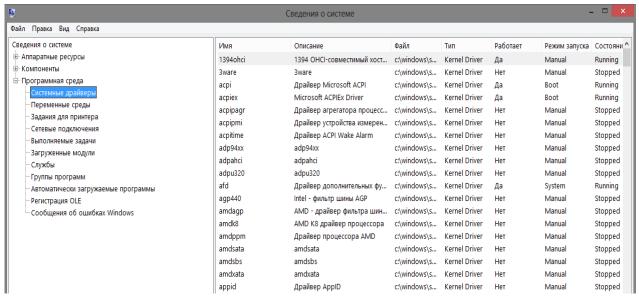


Рисунок 10 – Просмотр установленных драйверов устройств

3) Утилита Msconfig.

Чтобы увидеть, какие программы настроены на автоматический запуск на вашем компьютере, запустите утилиту *Msconfig* (рисунок 11). Сделайте самостоятельное исследование, перенастроив некоторые службы.

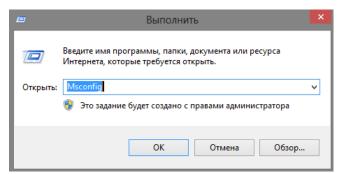


Рисунок 11 – Просмотр программ на автоматический запуск

- 1 Какую информацию дает *Tlist.exe*?
- 2 Как можно просмотреть список установленных драйверов устройств?

4 Лабораторная работа №4. Способы организации ввода-вывода. Произвольный доступ к файлу. Библиотека стандартного ввода-вывода систем

Цели работы: приобретение навыков при организации ввода-вывода.

4.1 Рабочее задание

- 1. В *Linux* создайте каталог со своим именем в директории /home/user/. Все файлы в этой лабораторной работе должны находиться здесь.
- 2. Создайте файл *file1*, в который надо записать все адреса электронной почты, встречающиеся в каком-либо на выбор студента файле из директории */etc*. Выведите содержимое файла также и на экран.
- 3. Создайте файл *file2*, в который выводятся строки файла /var/log/Xorg.0.log, содержащие предупреждения и информационные сообщения.
- 4. Создайте файл *file3* из файла *file2*, копируя и заменяя маркеры предупреждений и информационных сообщений на слова *«Warning:»* и *«Information:»*.
- 5. Найти в директории /etc все файлы, которые имеют какое-либо одно на ваш выбор расширение, выведите на экран файл с разными атрибутами (опциями).
- 6. Выведите список пользователей системы с указанием их *UID*, отсортировав по *UID*. Сведения о пользователей хранятся в файле /etc/passwd. В каждой строке этого файла первое поле имя пользователя, третье поле *UID*. Разделитель двоеточие.
- 7. Подсчитайте общее количество строк в файлах, находящихся в директории /var/log/ и имеющих расширение log.

4.2 Методические указания к выполнению лабораторной работы

Основным интерфейсом в ОС *Linux* является консольный интерфейс с текстовым вводом и выводом данных. Это определяет подход к управлению объектами операционной системы в их текстовом отображении. Например, состояние процессов отображается в виде набора текстовых файлов в псевдофайловой системе */proc*, сведения о событиях в системе хранятся в текстовых файлах журналов, настройки отдельных пакетов в текстовых конфигурационных файлах. Это необходимо для решения задач управления ОС освоение инструментария работы с текстовыми потоками.

У любого процесса, по умолчанию, всегда открыты три файла – *stdin* (стандартный ввод, клавиатура), *stdout* (стандартный вывод, экран) и *stderr* (стандартный вывод сообщений об ошибках на экран). Эти и любые другие открытые файлы могут быть перенаправлены. В данном случае термин «перенаправление» означает: получить вывод из файла (команды, программы, сценария) и передать его на вход в другой файл (команду, программу,

сценарий). Дескрипторы файлов открытых, по умолчанию: 0 = stdin; 1 = stdout; 2 = stderr. При этом действует следующее:

- 1 команда > файл перенаправление стандартного вывода в файл, содержимое существующего файла удаляется.
- 2 команда >> файл перенаправление стандартного вывода в файл, поток дописывается в конец файла.
- 3 команда1 | команда2 перенаправление стандартного вывода первой команды на стандартный ввод второй команды = образование конвейера команд.
- 4 команда1 \$(команда2) передача вывода команды 2 в качестве параметров при запуске команды 1.

В документации по командам говорится, что:

sort – сортирует поток текста в порядке убывания или возрастания;

uniq – удаляет повторяющиеся строки из отсортированного файла;

cut — извлекает отдельные поля из текстовых файлов (поле — последовательность символов в строке от разделителя до разделителя);

head – выводит начальные строки из файла на stdout;

tail – выводит последние строки из файла на stdout;

wc — считает количество слов/строк/символов в файле или в потоке;

tr – заменяет одни символы на другие.

Полнофункциональные многоцелевые утилиты:

grep – многоцелевая поисковая утилита, использующая выражения;

grep pattern [file...] – утилита поиска участков текста в файле(ах), соответствующих шаблону pattern;

Sed — неинтерактивный «потоковый редактор», принимает текст либо с устройства stdin, либо из текстового файла, выполняет операции над строками и выводит результат на устройство stdout или в файл. Sed определяет по заданному адресному пространству, над какими строками следует выполнить операции. Адресное пространство строк задается либо их порядковыми номерами, либо шаблоном. Например, команда 3d заставит sed удалить третью строку, а команда windows/d означает, что строки, содержащие "windows", должны быть удалены. Наиболее часто используются команды p — печать (на stdout), d — удаление и s — замена;

awk — утилита контекстного поиска и преобразования текста, инструмент для извлечения и/или обработки полей (колонок) в структурированных файлах. Awk разбивает каждую строку на отдельные поля. Поля - это последовательности символов, отделенных друг от друга пробелами, однако, можно назначить другие символы в качестве разделителя полей. Awk анализирует и обрабатывает каждое поле в отдельности.

- 1 Какие варианты вывода существуют?
- 2 Какие команды используются для поиска и замены участков текста?

5 Лабораторная работа №5. Файловая система. Доступ к файлам. Работа с файлами и каталогами. Изучение типов файлов. Поиск системных журналов систем

Цели работы: приобретение навыков работы с файловыми системами, с ее объектами, сменой их атрибутов и форматам вывода информации по ним.

5.1 Рабочее задание

- 1. Выполнить задания по управлению папками и файлами в Linux:
- зайти в меню терминала, «Настройки» «Управление профилями», сменить цвет текста, фона, иконку и строку с названием консоли на свою фамилию, чтобы это фигурировало в отчете;
- определить имя текущего каталога. Создать в /home/имя_вашего_ пользователя 2 папки, переместить одну папку в другую;
 - записать календарь текущего года, месяца в файлы year.txt и month;
 - проверить существование файлов year.txt и yaer.txt в данной папке;
 - создать к файлу month все виды ссылок;
- переименовать все созданные ссылки и дозаписать имя и фамилию в файл *month*;
 - устроить поиск строки, содержащей имя и фамилию в файлах папки;
 - сравнить файлы в папке;
- создать каталог «отчество_студента» и переместить в него все файлы по маске *.txt;
- зайти в папку «отчество_студента» и удалить все файлы по маске, содержащие в названии символ на ваш выбор;
- создать пустой файл *and.txt*. Объединить *year.txt* и *month*, слить в пустой файл, дозаписать список процессов и историю команд и просмотреть его постранично. Найти в нем 2 какие-либо последовательности символов одновременно на ваш выбор;
 - подсчитать количество строк в файле and.txt;
- изменить (назначить разные) права (доступ, владельцев, группы) на три любые объекта в вашей папке на каждый файл, сохранив таблицу первоначальных доступа, прав, групп в файле *prava.txt* и записав полученные права после смены;
 - удалить рабочую папку и все объекты в ней рекурсивно.
 - 2. В Windows отследить события в системных журналах событий.

5.2 Методические указания к выполнению лабораторной работы

- 1. Для работы в Linux с файлами и директориями есть команды:
- *pwd* выводит текущий путь;
- -ls выводит список файлов и каталогов по порядку (ls -l наиболее полный вывод с атрибутами содержимого папки);
 - cd переход в домашнюю директорию;
 - *cd /home* переход в директорию /*home*;
 - cd .. переход на уровень выше;

- -cd - возврат в предыдущую директорию;
- *mkdir* 0 создание директории с именем 0;
- rmdir 0 удаление директории с именем 0;
- touch 2 создание пустого файла;
- *cp* 1 2 копирование файла 1 в 2;
- nano 1 (или gedit 1) открытие файла 1 через текстового редактора;
- cat 1 показать содержимое файла 1;
- tac 1 показать содержимое файла 1 строками в обратном порядке;
- echo «Привет» выводит на экран сообщение «Привет»;
- *echo* «Привет» > 1 замена содержимого файла 1 строкой «Привет»;
- *echo* «Привет» >> 1 дозапись в файл 1 строки «Привет»;
- echo «Привет» | tee -a 1 добавление к концу файла 1 «Привет»;
- mv 1 2 переименование/перемещение 1 в 2 (для файла и папки);
- head 1 выводит начало файла (по умолчанию первые 10 строк);
- tail 1 выводит конец файла (по умолчанию последние 10 строк);
- *sort* 1 сортирует строки в файле 1;
- find 1 поиск файла 1 в текущей папке;
- grep «23» 1 поиск в файле 1 строки, содержащей «23»;
- ln 1 22 создание ссылки 22 на файл 1 (полным копированием);
- -ln-s 1 33 создание символьной ссылки 33 на файл 1 (ярлык);
- locate 1 поиск всех файлов по машине, содержащих в названии 1;
- -du sh 0 размер заданной директории 0, подходит и для файлов;
- wc 1- подсчет количества символов, букв, байт в файле 1;
- rm 1 удаление файла 1;
- rm -r рекурсивное удаление;
- more 1 постраничный просмотр файла 1;
- yes abc бесконечно печатает abc;
- nl 1 нумерует строки файла 1.

ls -l выдает информацию о текущей папке в полном объеме по своим атрибутам, дате и владельцу, его группе и правами. Объекту соответствует 9 битов разрешений, они формируют режим доступа и определяют, какие пользователи и группы имеют права на объект (рисунок 12).

Рисунок 12 – Распределение прав владения объектом

После одного бита определения объекта:

- первые три бита определяют права для владельца файла;
- вторые три бита определяют права для группы, к которой принадлежит владелец данного файла;

- последние определяют права для всех остальных пользователей.

Изменить режим доступа для файлов может только владелец файла или суперпользователь. Код доступа к файлу задается одним из двух режимов:

- цифровой (1- выполнение, 2 запись, 4 чтение);
- символьный (x выполнение, w запись, r чтение).

Обозначения для символьного режима: u - user (владелец файла), g - group (группа владельца), o - other (остальные), a - all (все). В цифровом виде для смешанных прав соответствующие числа складывают (рисунок 13).

Для работы в *Linux* с правами доступа на объекты есть команды:

- *chmod* 777 1 изменить прав доступа файла 1, 0777 разрешение на чтение/запись/исполнение для всех групп полный доступ;
- *chmod* -*R* 777 0 рекурсивное изменение прав доступа к директории 0, 777 разрешение на чтение/запись/исполнение для всех групп, все вложенные директории и файлы будут иметь права 777;
- $chown\ skazka:test\ 1$ изменение владельца и группы владельца только для файла 1;
 - chgrp test 1 изменение группы владельца файла 1;

Для передачи файла пользователю test: $cat file.txt \mid write test pts/1$. Для отправки файла всем пользователям: $cat file.txt \mid wall$.

- history / tail -30 - показать последние 30 набранных команд.

Команды в терминале выводят информацию, можно использовать метасимволы для формирования сложных команд:

- а) > запись в файл. Например, существует файл goa с некоторым содержимым, набираем «date>goa» содержимое файла стирается и в него записывается текущая дата;
- б) >> дозапись в конец существующего файла. Например, существует файл goa с некоторым содержимым, набираем $\langle date \rangle > goa \rangle$ содержимое файла остается + в конец файла goa добавляется строка с текущей датой;
- в) | программный канал результат одной команды передается другой команде;
 - г) & процесс выполняется в фоновом режиме;
 - д) ? любой 1 символ;
 - е) * любое количество любых символов;
 - ж); перечисление, команды выполняются друг за другом;
- и) & при объединении команд: последующая команда выполняется только при нормальном завершении предыдущей;
- к) || при объединении команд: последующая команда выполняется только, если не выполнилась предыдущая команда;
 - л) () группирование команд в скобки, как в арифметических расчетах;
 - м) { } группирование команд с объединенным выводом;
- н) [] указание диапазона данных или перечисление данных (без запятых).

```
root@Debian:/home/skazka# ls -l
итого 8
-rwxrwxrwx 1 root root 5081 Июл 16 18:38 1
root@Debian:/home/skazka# chmod 102 1
root@Debian:/home/skazka# ls -l
итого 8
---x----w- 1 root root 5081 Июл 16 18:38 1
root@Debian:/home/skazka# chmod 450 l
root@Debian:/home/skazka# ls -l
итого 8
-r--r-x--- 1 root root 5081 Июл 16 18:38 1
root@Debian:/home/skazka# chmod u+x l
root@Debian:/home/skazka# ls -l
итого 8
-r-xr-x--- 1 root root 5081 Июл 16 18:38 1
root@Debian:/home/skazka# chmod g-x l
root@Debian:/home/skazka# ls -l
итого 8
-r-xr----- 1 root root 5081 Июл 16 18:38 1
root@Debian:/home/skazka# chmod a+rw l
root@Debian:/home/skazka# ls -l
итого 8
-rwxrw-rw- l root root 508l Июл 16 18:38 l
root@Debian:/home/skazka# chmod o-rw l
root@Debian:/home/skazka# ls -l
итого 8
-rwxrw---- 1 root root 5081 Июл 16 18:38 1
root@Debian:/home/skazka# chown skazka:test 1
root@Debian:/home/skazka# ls -l
итого 8
-rwxrw---- 1 skazka test 5081 Июл 16 18:38 1
```

Рисунок 13 – Примеры смены прав доступа на объект

2. В операционной системе Windows реализована функция отслеживания важных событий, которые происходят в работе системных программ. Под понятием «события» подразумеваются любые происшествия в системе, которые фиксируются в специальном журнале и сигнализируют о себе пользователям или администраторам. Это может быть служебная программа, не желающая запускаться, сбой в работе приложений или некорректная установка устройств. Все происшествия регистрирует и сохраняет журнал событий Windows. Он также располагает и показывает все действия в хронологическом порядке, помогает производить системный контроль, обеспечивает безопасность операционной системы, исправляет ошибки и диагностирует всю систему.

Следует периодически просматривать этот журнал на предмет появления поступающей информации и производить настройку системы для сохранения важных данных.

Программа, отвечающая за регистрацию происшествий, запускается нажатием кнопки «Пуск» - «Панель управления» - «Администрирование» - «Просмотр событий» (рисунок 14).

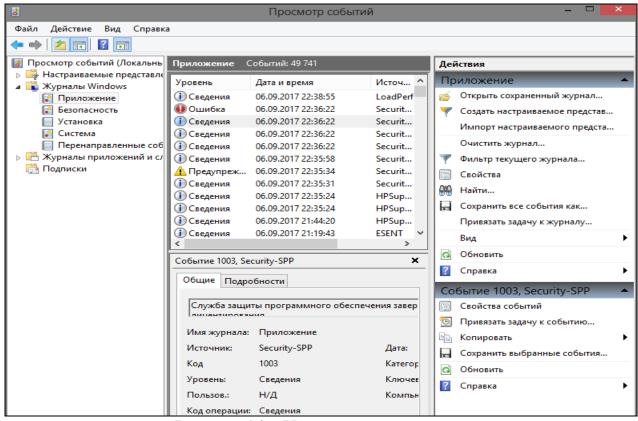


Рисунок 14 – Утилита после запуска

В Windows установлены два вида журналов событий: системные архивы и служебный журнал приложений. Первый для фиксации общесистемных происшествий, связанных с производительностью различных приложений, запуском и безопасностью. Второй записывает события их работы. Для контроля и управления всеми данными служба «Журнал событий» использует вкладку «Просмотра», которая подразделяется на следующие пункты:

- 1) Приложение хранятся события, которые связаны с какой-то определенной программой. Например, почтовые службы хранят историю пересылки информации, различные события в почтовых ящиках.
- 2) Безопасность сохраняет все данные, относящиеся к входам в систему и выходу из нее, использованию административных возможностей и обращению к ресурсам.
- 3) Установка в этот журнал событий заносятся данные, которые возникают при установке и настройке системы и ее приложений.
- 4) Система фиксирует все события операционки такие, как сбой при запуске служебных приложений или при установке и обновлении драйверов устройств, разнообразные сообщения, касающиеся работы всей системы.
- 5) Перенаправленные события если этот пункт настроен, то в нем хранится информация, которая приходит с других серверов.

Очень важным моментом в предохранении системы от сбоев и зависаний является периодическое просматривание журнала «Приложение», в котором фиксируются сведения о происшествиях, недавних действиях с той или иной программой, а также предоставляется выбор доступных операций. Зайдя в журнал событий *Windows*, в подменю «Приложение» можно увидеть список всех программ, вызвавших различные негативные события в системе, время и дату их появления, источник, а также степень проблемности. В этой консоли можно сохранить все события за последние несколько месяцев, очистить журнал от старых записей, изменить размер таблицы.

Следует научиться применять это с этим полезным приложением «Планировщик задач». Для этого необходимо правой клавишей мыши кликнуть на любое происшествие и в открывшемся окне выбрать меню привязки задачи к событию. В следующий раз, когда произойдет такое происшествие, ОС запустит установленную задачу на обработку ошибки и ее исправление (рисунок 15).

Журнал событий — способ, позволяющий программам и системе фиксировать и сохранять все события на компьютере в одном месте. В таком журнале хранятся все операционные ошибки, сообщения и предупреждения системных приложений.

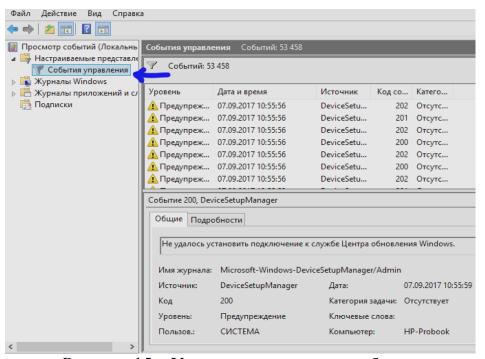


Рисунок 15 – Установка реакции на событие

- 1 Как используются цифровые и буквенные назначения прав объектам системе в *Linux*?
 - 2 Какие существуют виды журналов событий в Windows?
 - 3 Зачем изучать работу Журнала событий?

6 Лабораторная работа №6. Структура реестра ОС. Изучение работы реестра систем

Цели работы: приобретение навыков работы по работе с реестром *Windows*; изучение структуры реестра OC.

6.1 Рабочее задание

При выполнении этой лабораторной работы надо работать на виртуальной машине *Windows*. Перед началом работы рекомендуется сделать снимок экрана (*snapshot*), чтобы была возможность «откатиться» в случае возникновения неполадок в системе. Необходимо выполнить задания:

- 1) Познакомиться со сторонними утилитами для работы с реестром *Process Monitor* и *Registry Monitor* (regmon), их необходимо скачать. Установить дополнительно еще 2 программы работы с реестром и немного поработать и в них. Сделать анализ проделанной работы.
- 2) Познакомиться с принципами использования программ редактирования реестра *regedt.exe* (*regedit32.exe*) и найти информацию, чтобы:
 - обеспечить ускоренную загрузку ОС;
 - обеспечить более быстрое завершение ОС;
 - поставить запрет и разрешение расширенного режима *CMD*;
- изменение раскладки клавиатуры, по умолчанию, с русского языка на английский;
 - отключить возможность создания ярлыков;
 - запретить пользователям запуска диспетчера задач;
 - увеличить или уменьшить скорость вывода всплывающих меню;
 - скрыть значки дисков в окне «Мой компьютер»;
 - при входе в систему переключатель *Num Lock* включен;
 - запретить пользователю запуск заданного им списка программ;
 - обеспечить автоматическую выгрузку *DLL*-библиотек;
 - разрешить ОС автоматически завершать зависшие программы;
 - запретить командную строку;
- скрыть доступ к апплету «Установка/ Удаление программ» в Панели управления;
 - запретить запуск апплета «Экран» в Панели управления;
 - очистить файл подкачки Windows;
- изменить порог выдачи предупреждения о недостатке свободного места на диске.

6.2 Методические указания к выполнению лабораторной работы

Реестр Windows представляет собой реляционную базу данных, в которой аккумулируется вся необходимая для нормального функционирования компьютера информация о настройках операционной системы, программном обеспечении и оборудовании. Все хранящиеся в

реестре данные представлены в стандартизированной форме и четко структурированы согласно предложенной разработчиками *Windows* иерархии.

В случае установки или удаления каких-либо устройств, приложений или системных компонентов информация о подобных изменениях записывается в реестр и считывается оттуда в ходе каждой загрузки операционной системы. Реестры разных версий *Windows* имеют различия.

Редактирование реестра Windows позволяет:

- решать проблемы, возникающие в процессе эксплуатации прикладного программного обеспечения, гибко настраивать режимы работы приложений;
- устранять неполадки в работе оборудования, вызванные некорректным использованием ресурсов ОС или драйверов устройств;
- настраивать параметры и ограничения пользовательской среды *Windows*, изменять заданные, по умолчанию, характеристики ОС;
 - управлять быстродействием компьютера;
 - перераспределять ресурсы ОС по усмотрению администратора;
- управлять конфигурацией компонентов *Windows* и системных сервисов, что позволяет оптимизировать работу операционной системы, в зависимости от назначения компьютера и стоящих перед пользователем задач.

Структура реестра 64-разрядной версии ОС Windows несколько отличается от архитектуры реестра 32-разрядных версий ОС Windows. Реестр 64-bit имеет два независимых раздела: в одном содержатся данные, относящиеся к 32-разрядным компонентам операционной системы, в другом все сведения по 64-разрядным компонентам, - причем ключи и ветви обоих разделов имеют практически одинаковые наименования и обозначения. В комплекте поставки ОС Windows 64-bit имеется две версии Редактора реестра: одна, запускаемая по умолчанию, демонстрирует только 64-разрядный раздел реестра ОС, а другая предназначена для редактирования 32-разрядного раздела. Для того чтобы запустить на компьютере, работающем под управлением 64-разрядной версии ОС Windows, 32-разрядную версию Редактора реестра, необходимо закрыть окно 64-разрядной версии Редактора, если эта программа была запущена ранее, поскольку оба эти приложения не могут работать одновременно.

В Windows реестр хранится в бинарном (двоичном) виде, поэтому для ручной работы с ним необходима специальная программа - редактор реестра - это Regedit.exe, в более ранних версиях Windows ими являются Regedit.exe и Regedt32.exe, имеющий дополнительные возможности работы с реестром (рисунок 16). Есть и другие программы, в том числе и консольные (Reg.exe).

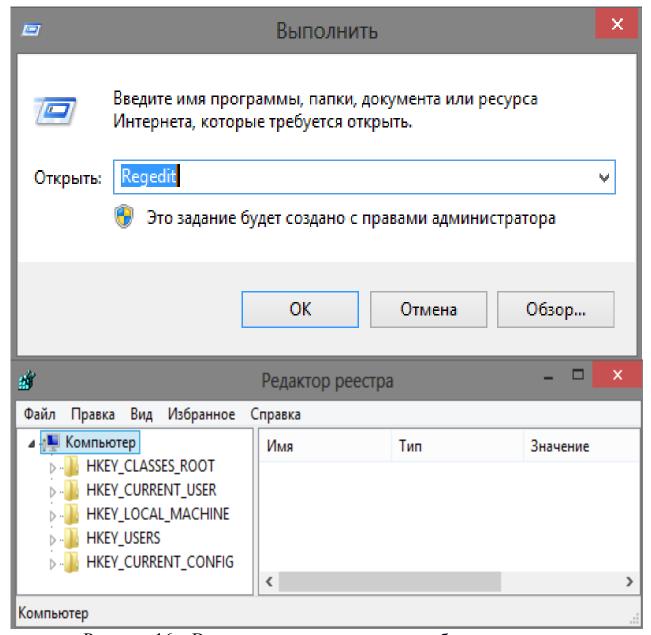


Рисунок 16 – Вызов и вид программы для работы с реестром

Реестр *Windows* имеет многоуровневую структуру, состоящую из четырех ступеней. К первой, самой верхней в иерархии реестра, ступени относятся так называемые ветви ($Hive\ Keys$), или ульи, которые принято обозначать по их английскому наименованию аббревиатурой HKEY_, где за символом подчеркивания следует обычно название самой ветви.

В реестре Windows существует пять ветвей:

- 1) $HKEY_CLASSES_ROOT$ или HKCR сопоставляет расширения файлов и идентификаторы классов OLE. Фактически он указывает на $HKLM \setminus Software \setminus Classes$. Система использует эти соответствия, чтобы определить, какие приложения или компоненты нужно использовать при открытии или создании тех или иных типов файлов или объектов данных.
- 2) HKEY_CURRENT_USER или HKCU указывает на профиль текущего пользователя (вошедшего в данный момент в систему) внутри HKU. Microsoft

требует, чтобы приложения хранили все предпочтения пользователей в подразделах под HKCU. Например, $HKCU \setminus Software \setminus Microsoft \setminus Windows \setminus Current Version \setminus Applets \setminus Paint$ содержит личные настройки пользователей программы Paint.

- 3) *HKEY_LOCAL_MACHINE* или *HKLM* хранит все настройки, относящиеся к локальному компьютеру. Приложения должны хранить здесь данные только в том случае, когда они относятся ко всем, кто пользуется компьютером. Например, драйвер принтера может хранить здесь набор настроек принтера, применяемых, по умолчанию, и копировать эти данные для каждого профиля пользователя при входе пользователя в систему.
- 4) *HKEY_USERS* или *HKU* содержит записи для каждого из пользователей, когда-либо входивших в систему. Владельцем каждой из этих записей является соответствующая пользовательская учетная запись, там содержатся настройки профиля этого пользователя. Если используются групповая политика, то задаваемые в ней настройки применяются здесь к профилям отдельных пользователей.
- 5) *HKEY_CURRENT_CONFIG* или *HKCC* хранит информацию о текущей загрузочной конфигурации компьютера. В частности, здесь хранится информация о текущем наборе системных служб и об устройствах, имевшихся во время загрузки. На самом деле, этот корневой раздел является указателем на раздел внутри *HKLM*.

Второй ступенью в иерархической системе реестра являются так называемые разделы, или ключи (Keys). В Windows нет какого-либо единого стандарта в обозначении ключей системного реестра, поэтому их имена были назначены разработчиками, исходя из типа данных, представленных внутри ключа. Ключи отображаются в программе Редактор реестра в виде подпапок ветвей HKEY_. Следует понимать, что не существует также каких-либо жестких ограничений, сопоставляющих ключам строго определенный тип данных. Иными словами, ключи в иерархии реестра служат исключительно для облегчения доступа к информации и являются одним из средств ее упорядочения. Функционально ключи можно разделить на две условные категории: определяемые системой, то есть те, имена которых назначены операционной системой, причем изменение этих имен может привести к отказу или сбоям в работе Windows, и определяемые пользователем - имена этих ключей могут быть изменены администратором компьютера, и такие изменения не приведут к каким-либо фатальным последствиям.

Реестр является настоящей базой данных, поэтому в нем используется технология восстановления, похожая на используемую в *NTFS. LOG*-файлы содержат журнал транзакций, который хранит все изменения. Благодаря этому реализуется атомарность реестра, то есть в данный момент времени в реестре могут быть либо старые значения, либо новые, даже после сбоя. В отличие от *NTFS*, здесь обеспечивается сохранность не только структуры реестра, но и данных.

Реестр или его отдельные части можно экспортировать в текстовые *reg*файлы, редактировать в блокноте, а затем импортировать обратно. Некорректное изменение хранящейся в реестре информации способно нарушить работоспособность *Windows*. Достаточно допустить ошибку в записи значения какого-либо ключа или параметра, и пользователь больше не сможет загрузить компьютер. Тогда спасти положение может только восстановление последней работоспособной копии. Именно по этой причине разработчики *Windows* заметно ограничили доступ к реестру и редактировать параметры реестра, касающиеся безопасности, могут только пользователи, имеющие в системе учетную запись администратора.

Для создания архивной копии или восстановления реестра можно вызвать утилиту из меню «Служебные» - «Архивация данных». После запуска утилиты в окне необходимо выбрать кнопку «Диск аварийного восстановления». Будет выдано сообщение, в котором необходимо поставить галочку «Архивировать реестр». Реестр будет скопирован в папку %systemroot%\repair\RegBack, где %systemroot% - папка, куда установлена Windows. Будет создана резервная копия реестра.

Управление протоколированием с помощью ключей реестра:

1) Очистка файла подкачки.

Файл подкачки pagefile.sys находится в корне каждого или только системного диска. Там могут оставаться пароли к различным ресурсам и другая конфиденциальная информация. Для очистки данного файла после завершения работы устанавливается параметр типа *DWORD ClearPageFileAtShutdown*=1 в разделе [HKEY_LOCAL_MACHINE\SYSTEM\ CurrentControlSet\ Control\Session Manager\Memory Management]. Установки вступят в силу после перезагрузки системы.

- 2) Автоматическое удаление временных файлов после работы в Интернет [HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\Current Version\Internet Settings\Cache] Значение ключа Persistent=0 заставит Internet Explorer удалять все временные файлы.
- 3) Отменить сохранение списка документов, с которыми вы работали NoRecentDocsHistory=1 в [HKEY_LOCAL_MACHINE\Software\Microsoft\ Windows\CurrentVersion\Policies\ Explorer]
 - 4) Отмена сохранения информации о действиях пользователя

Ключ *NoInstrumentation*=1 запрещает записывать с какими приложениями недавно работал пользователь и к каким документам получал доступ: $[HKEY_LOCAL_MACHINE \setminus Software \setminus Microsoft \setminus Windows \setminus Current Version \setminus Policies \setminus Explorer]$

- 5) Пароли и безопасность: рассматриваемые настройки хранятся в ветви $[HKLM \setminus SOFTWARE \setminus Microsoft \setminus Windows \setminus Current Version \setminus Policies \setminus Network]$. Все ключи имеют тип DWORD, если это не обговорено отдельно; значение ключа, равное 1, включает данную опцию, 0 выключает.
- 1. Звездочки в паролях. При попытке доступа к защищенному паролем ресурсу *Windows* не скрывает пароль, который вы вводите. Параметр

HideSharePwds=1 определяет скрывать пароли к расшаренным ресурсам звездочками.

- 2. Запрет на доступ к файлам и принтерам: для запрещения доступа к файлам служит ключ *NoFileSharing*, а для запрета управления доступом к файлам ключ *NoFileSharingControl*. Запрет доступа к принтерам устанавливается ключом *NoPrintSharing*. Ключ *NoPrintSharingControl* устанавливает запрет на управление доступом к принтерам.
 - 3. Запрет перечисления рабочей группы

Для того чтобы запретить перечисление содержимого рабочей группы, надо установить значение ключа *NoWorkgroupContents* равным 1. Даже при запрете пользователи могут подключаться к компьютерам в своей рабочей группе или домене. Для этого необходимо набрать полное сетевое имя разделенного ресурса в формате *UNC*, в диалоговых окнах команд «Выполнить» или «Подключить сетевой диск».

- 4. Запрет доступа для анонимных пользователей: анонимный пользователь может получить доступ к списку пользователей и открытых ресурсов. Чтобы это запретить, можно воспользоваться данным ключом: $[HKEY_LOCAL_MACHINE \SYSTEM \CurrentControlSet \Control \LSA]$ RestrictAnonymous=1
- 5. Включить режим, при котором в режиме обзора сети другие пользователи не будут видеть компьютера: [HKEY_LOCAL_MACHINE\ SYSTEM\CurrentControlSet\Services\LanmanServer\Parameters] Hidden=1
- 6. Автоматический вход в систему без ввода имени и пароля создать [HKEY_LOCAL_MACHINE\ отредактировать В разделе реестра ИЛИ *SOFTWARE\Microsoft\WindowsNT\CurrentVersion\Winlogon*] строковые параметры «DefaultDomainName», «DefaultUserName», «DefaultPassword» в качестве их значений укажите требуемые для входа в систему имя домена, имя пользователя и пароль соответственно. Создать или отредактировать в этом же разделе строковый параметр «AutoAdminLogon» для автоматического входа в систему, присвоив ему значение 1. 0 отменяет автоматический вход. Пароль сохраняется как текст, поэтому любой пользователь, имеющий доступ к системному реестру, может увидеть заданный, по умолчанию, пароль, но доступ к реестру можно запретить.
- 7. Пароль после ждущего режима: параметр типа *DWORD PromptPasswordOnResume*=1 в [HKEY_CURRENT_USER\Software\Policies\ Microsoft\Windows\System\Power].
- 8. Запрет на доступ к содержимому выбранных дисков: можно не скрывать сами значки дисков, но запретить пользователю доступ к файлам заданных дисков через Проводник, Мой компьютер, Выполнить или команду Dir. Для этого необходимо создать параметр NoViewOnDrive типа DWORD в разделе $[HKEY_CURRENT_USER \setminus Software \setminus Microsoft \setminus Windows \setminus Current \setminus Policies \setminus Explorer]$, содержащий битовую маску для дисков. Например, диск A имеет бит 1, диск C 4, диск D 8. Таким образом, чтобы скрыть диски A и D, нужно сложить их значения A (A) + 8 (A) и установить значение 9. Список

- всех дисков: A: 1, B: 2, C: 4, D: 8, E: 16, F: 32, G: 64, H: 128, I: 256, J: 512, K: 1024, L: 2048, M: 4096, N: 8192, O: 16384, P: 32768, Q: 65536, R: 131072, S: 262144, T: 524288, U: 1048576, V: 2097152, W: 4194304, X: 8388608, Y: 16777216, Z: 33554432, Все диски: 67108863
- 9. Установка способа доступа к расшаренным ресурсам компьютера из сети: позволяет другому пользователю получить информацию о доступных для общего пользования директориях и об имеющихся на компьютере локальных пользователях. Раздел: [HKLM\System\CurrentControlSet\Control\Lsa], параметр restrictanonymous, тип DWORD. Если значение равно 1 запрещает анонимным пользователям просматривать удаленно учетные записи и расшаренные ресурсы, 2 отказывает любой неявный доступ к системе (в сетевом окружении компьютер не будет виден, однако, доступ к нему можно будет получить, обратившись по его IP). Установки вступят в силу после перезагрузки системы.
 - 6) Работа с реестром.
- 1. Размер реестра ограничивается параметром RegistrySizeLimit (тип REG_DWORD) в разделе реестра $[HKEY_LOCAL_MACHINE \SYSTEM \CurrentControlSet \Control].$
- 2. Запрещение запуска редактора реестра: $[HKEY_CURRENT_USER \setminus SOFTWARE \setminus Microsoft \setminus Windows \setminus Current Verson \setminus Policies \setminus System]$ параметр DisableRegistryTools=1 типа DWORD. Запуск редактора реестра будет запрещен, однако, останется возможность вносить изменения с помощью программного обеспечения сторонних разработчиков и с помощью REG-файла.

7) *CMD*.

- 1. Запрет на расширенный режим командного процессора CMD.EXE. Например, в расширенном режиме существуют такие команды как del, erase, chdir, goto. Для запрета создается параметр типа DWORD EnableExtensions=0 в разделе $[HKCU\Software\Microsoft\Command$ Processor].
- 2. Запрет на режим командной строки и обработки bat-файлов. Для этого в $[HKCU \setminus Software \setminus Policies \setminus Microsoft \setminus Windows \setminus System]$ надо создать параметр типа $DWORD\ Disable\ CMD$, который может принимать значения:
- 0 (или отсутствие записи в реестре) система может использовать режим командной строки и обрабатывать *bat*-файлы;
- -1 система не может использовать режим командной строки, но может обрабатывать bat-файлы;
- 2 система не может использовать режим командной строки и обрабатывать bat-файлы.
- 8) Изменение порога выдачи предупреждения о недостатке свободного места на диске. Если на диске остается свободным менее 10%, по умолчанию, места, то система информирует об этом появлением иконки в области уведомления. Можно изменить порог в процентном соотношении параметром типа DWORD DiskSpaceThreshold, в котором указывается значение от 0 до 99

- (т.е. процент от объема диска) в разделе [HKEY_LOCAL_MACHINE\System\ CurrentControlSet\Services\LanmanServer\Parameters].
- 9) Отключение сообщения о недостатке свободного места на диске $[HKEY_CURRENT_USER \ CurrentVersion \ CurrentVersion \ Noticies \ Xplorer]$ ключ типа $DWORD\ NoLowDiskSpaceChecks=1$.
- 10) Отключение (запрет) *Task Manager:* [HKEY_CURRENT_USER\ Software\Microsoft\Windows\CurrentVersion\Policies\System] создается ключ типа *DWORD* под названием *DisableTaskMgr*, значение 1. Удалив этот ключ или присвоив ему 0, можно вновь разрешить *Task Manager*.
- 11) Завершение задач, которые «повисли» и перестали отвечать можно настроить таким образом, чтобы они закрывались автоматически и, значит, значение ключа надо выставить соответствующим *HungAppTimeout* в разделе [*HKCU\Control Panel\Desktop*], определяющее время в миллисекундах (время, через которое не отвечающее приложение считается зависшим). Кроме этого ключа, в той же ветке есть ключи *WaitToKillServiceTimeout*, который задаёт время ожидания перед «убийством» зависшей службы, и *AutoEndTasks*, присвоив которому значение 1, можно разрешить системе убивать зависшие процессы самостоятельно. Не следует ставить очень малые значения *Timeout*, поскольку могут возникнуть проблемы с невовремя закрытыми программами и службами.
- 12) Автоматическое включение NumLock при загрузке делается строковым значением InitialKeyboardIndicators, равным 2 в $[HKEY_CURRENT_USER \ Control\ Panel \ Keyboard]$.
- 13) Ненужные записи в блоке «Установка/Удаление программ». Все программы должны включать программу *Uninstall*, иногда программа может удалиться, но запись в блоке «Установка/Удаление программ» остается: [HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Unin stall] под этим ключом ряд подключей, каждое из которых представляет установленную программу. Параметры *DisplayName* и *UninstallString* названия, используемые в списке программ «Установка/Удаление» и программа, используемая для деинсталляции.
- 14) Запрещение запуска программ. Windows позволяет ограничить доступ к программам, кроме разрешенных в специальном списке. Для ограничения запускаемых программ надо открыть [HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows\CurrentVerson\Policie] $s \mid Explorer \mid$ и создать там ключ RestrictRun=1 типа DWORD. Затем тут же надо создать подраздел с аналогичным именем RestrictRun и в нем перечислить список разрешенных к запуску программ для текущего пользователя. Записи в этом подразделе пронумеровываются, начиная с 1, и содержат строки с путями (необязательно) и именами приложений. Файлы должны быть с расширением. Необходимо указать файл Regedit.exe, иначе невозможно будет запустить редактор реестра. Для сброса ограничения на запуск программ надо установить значение ключа RestrictRun в 0.

- 15) Автоматическая выгрузка DLL. Оболочка Windows выгружает неиспользуемые DLL не сразу, а через некоторое время. Этот промежуток времени иногда может достигать больших интервалов (особенно при отладке программ). Для автоматической выгрузки всех DLL в разделе $[HKEY_LOCAL_MASHINE \SOFTWARE \Microsoft \Windows \Current Version \Explorer]$ надо установить значение строкового параметра AlwaysUnloadDLL, равным 1.
- 16) Можно ускорить действие файловой системы, увеличив параметр типа DWORD IoPageLockLimit в разделе [HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session Manager\Memory Management] от заданных по умолчанию 512 КБ до 4 МБ и более (таблица 1). Этот параметр представляет максимальное число байт, которые могут быть блокированы для операций ввода/вывода. Когда значение параметра равно 0, то система использует встроенный алгоритм определения необходимой памяти и использует объем 512 КБ. Установка максимального значения должна основываться на объеме памяти системы. Установки вступят в силу после перезагрузки системы.

Таблица 1 – Параметры ускорения действие файловой системы

RAM (MB)	IoPageLockLimit
32	4096000
64	8192003
128	16384000
256+	65536000

- 17) Управление размером файла *SHELLICONCACHE*. *Windows* хранит некоторые значки, используемые оболочкой, в файле *SHELLICONCACHE*. При частом изменении параметров оболочки размер данного файла увеличивается, что приводит постепенно к тормозам при перерисовке значков из-за отсутствия места в кэше. Можно увеличть размер кэша этого файла, устанавливая строковый параметр *MaxCachedIcons* равным 5000 (5 Мбайт) в разделе [HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\ Explorer]. По умолчанию, этот параметр не присутствует в реестре. Рекомендуется иногда удалять файл *SHELLICONCACHE*, особенно, когда вы начинаете замечать, что значки становятся черными на Рабочем столе.
- 18) Скрытие «Свойств папки» делается с помощью [$HKEY_CURRENT_USER\Software\Microsoft\Windows\Current Version\Policies\Explorer$] создать параметр типа DWORD с названием NoFolderOptions и значением 1. После перезагрузки «Свойств папки» в проводнике не будет.
- 19) Запреты: добавление ключа типа *DWORD* со значением 1 по адресу [HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Policies\ Explorer] включает опцию, удаление или «0» отключает меню «Пуск»:
 - NoRecentDocsMenu Скрыть «Документы»;
 - NoFavoritesMenu Скрыть «Избранное»;

- *NoRun* Скрыть «Выполнить»;
- NoClose Скрыть «Завершение работы»;
- *NoLogoff* Скрыть «Завершение сеанса»;
- NoWindowsUpdate скрыть «Windows Update»;
- NoSetFolders скрыть «Настройка»;
- NoSetTaskbar запретить настройку Панели задач.

Меню «Пуск», подменю «Настройка»:

- NoSetActiveDesktop Скрыть «Рабочий стол Active Desktop»;
- NoSetFolders скрыть «Принтеры» и «Панель управления»;
- NoSetTaskbar скрыть «Панель задач» и меню «Пуск»;
- NoNetworkConnections скрыть «Удаленный доступ к сети.

Меню «Пуск», подменю «Документы»:

- NoRecentDocsHistory не помнить недавно открытых документов;
- MaxRecentDocs количество недавно открытых документов;
- ClearRecentDocsOnExit очистить список недавно открытых документов при выходе;
- *NoSMDocs* скрыть «Мои документы»;
- NoSMMyPictures скрыть «Мои рисунки».

Меню «Пуск», подменю «Настройка», пункт «Принтеры»:

- NoPrinterTabs скрыть вкладки в диалоге «Свойства: принтер»;
- NoDeletePrinter запретить удаление принтера;
- *NoAddPrinter* запретить добавление принтера. «Рабочий стол»:
- NoDesktop отключить «Рабочий стол»;
- NoStartBanner отключить «Начните работу с нажатия этой кнопки»;
- NoActiveDesktop отключить Active Desktop;
- NoActiveDesktopChanges запретить изменения на Active Desktop.
 «Разное»:
- NoSaveSettings запретить сохранение установок;
- *NoDrives* скрыть все диски в «Мой компьютер» (*FF FF FF FF*). В зависимости от значения скрываются разные буквы дисков, $00\ 00\ 00\ -$ не скрыт ни один.

«Панель управления», диалог «Сеть» [HKEY_CURRENT_USER\Software\ Microsoft\Windows\CurrentVersion\Policies\Network]:

- NoNetSetup диалог «Сеть» недоступен;
- NoNeSetupIDPage вкладка «Идентификация» недоступна;
- NoNetSetupSecurityPage- вкладка «Управление доступом» недоступна;
- NoEntireNetwork скрыть «Вся сеть»;
- NoWorkgroupsContents скрыть содержимое сети.

«Панель управления», диалог «Пароли» [HKEY_CURRENT_USER\ Software\ Microsoft\Windows\CurrentVersion\Policies\System]:

- NoSecCPL - диалог «Пароли» недоступен;

- NoPwdPAGE вкладка «Смена паролей» недоступна;
- NoAdminPage вкладка «Удаленное администрирование» недоступна;
- *NoProfilPage* вкладка «Профили пользователей» недоступна. «Панель управления», диалог «Экран»:
 - NoDispCPL диалог «Экран» недоступен;
 - NoDispAppearancePage вкладка «Оформление» недоступна;
 - NoDispBackgroundPage вкладка «Фон» недоступна;
 - NoDispScrSavePage вкладка «Заставка» недоступна;
 - NoDispSettingsPage вкладка «Настройка» недоступна.
- 20) Отключение автоматической проверки апдейтов можно параметром типа *DWORD EnableBalloonTips*=0 в разделе [HKEY_CURRENT_USER/ Software/Microsoft/Windows/CurrentVersion/Explorer/Advanced].
- 21) Связанные документы. При перемещении или удалении *html*-документа будут также перемещены или удалены и сопоставленные с этим документом файлы, которые содержатся в папке ИмяДокумента. *files*. Если необходимо отключить подобное поведение, то надо создать параметр типа *DWORD NoFileFolderConnection*=1 в разделе [*HKEY_CURRENT_USER*\ Software\Microsoft\Windows\CurrentVersion\Explorer].
- 22) Проводник выступает и в качестве оболочки Windows и в качестве файл-менеджера. На использовании памяти это сказывается не лучшим образом. При нормальных условиях Проводник отнимает целых 8 Мбайт памяти Windows. Из-за проблем с выделением памяти Windows использует двойную квоту памяти для Проводника, считая ее используемой разными программами. Чтобы избавиться от этой проблемы, надо запустить Проводник как два отдельных процесса вместо одного. Для этого нужно изменить значение параметра типа DWORD SeparateProcess ("0" один процесс, "1" два процесса) в разделе [HKEY_CURRENT_USER\Software\Microsoft\ Windows\CurrentVersion\Explorer\Advanced].
- 23) Изменение раскладки клавиатуры, по умолчанию. В разделе $[HKU \setminus DEFAULT \setminus Keyboard \ Layout \setminus Preload]$ на первую позицию надо поместить желаемую раскладку 00000409 (английская раскладка) или 00000419 (русская).

- 1 Зачем редактировать реестр Windows?
- 2 Какие отличия для 32- и 64-разрядных версий Windows?
- 3 Каким образом можно восстановить первоначальные значения реестра?
- 4 Какие программы дополнительно можно использовать для работы по изменению реестра?

7 Лабораторная работа №7. Изучение базовых прав доступа. Переход в режим суперпользователя. Изучение базы данных пользователей. Добавление и удаление пользователей систем

Цели работы: приобретение навыков работы с ОС через терминал при управлении учетными записями.

7.1 Рабочее задание

Выполнить задания по управлению учетными записями в *Linux*:

- 1) Создать 2 пользователей в системе (по имени папы и мамы) с паролями, создать группу *Roditeli*, добавить обоих пользователей в эту группу, вывести по ним всевозможную информацию.
- 2) Под суперпользователем переопределить пароли для обеих учетных записей.
 - 3) Обменяться сообщениями вышеуказанным пользователям.
 - 4) Обменяться файлами вышеуказанным пользователям.
 - 5) Удалить всех созданных пользователей и группу.

7.2 Методические указания к выполнению лабораторной работы

Командная строка начинается приглашением - подсказкой, что система готова принимать команды пользователя (рисунок 17). Приглашение может быть оформлено по-разному, но чаще всего оно заканчивается символом «\$» (права обычного пользователя) или «#» (права суперпользователя).

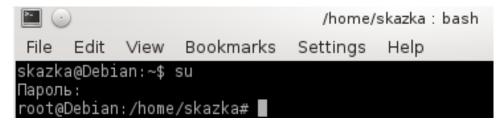


Рисунок 17 - Введенная команда su в строке приглашения позволяет залогиниться под суперпользователем

Например, в конструкции abc@def:gh до @» - имя пользователя; между @» и @» - имя домена; после @0 - путь к папке, где находится текущий пользователь и в конце признак пользователя, например, запись skazka@Debian: @0 означает: пользователь skazka сидит с доменным именем Debian, @0 - находится в своей домашней директории (home/skazka), являясь обычным пользователем. Или root@Debian: home/skazka#0 означает: пользователь гооt сидит на машине с доменным именем Debian, находится в директории home/skazka, являясь суперпользователем.

В консоли команды для работы с пользователями и группами пользователей:

- id skazka - информацию по пользователю skazka (логин, UID, GID);

- finger skazka показать информацию о пользователе skazka;
- last действия последних зарегистрированных пользователей;
- who показывает имя текущего пользователя и время входа;
- whoami показывает к какой группе относится текущий пользователь;
- useradd skazka добавление нового пользователя skazka (или adduser);
- groupadd pritcha добавление группы pritcha;
- usermod -a -G pritcha skazka добавляет в группу pritcha пользователя skazka (для Debian-подобных ОС);
 - passwd skazka задание пароля пользователю skazka;
 - userdel skazka удаление пользователя skazka;
 - groupdel pritcha удаление группы pritcha;
 - login skazka залогиниться под пользователем skazka;
 - exit завершение сеанса текущего пользователя;
 - su (или sudo su) войти под администраторской учетной записью;
- *sudo nano* запустить приложение *nano* от имени администратора (*sudo*= *substitute user and do*) позволяет пользователю выполнять указанные программы с административными привилегиями без ввода пароля суперпользователя);
- wall и write отправляет на терминалы других пользователей сообщения. write позволяет общаться с другими пользователями путем копирования строк из Вашего терминала в их в режиме онлайн. Алгоритм действий: узнаем, кто в данный момент находится в системе и к какому терминалу подключен с помощью команды who (рисунок 18), далее отправляем сообщение пользователю test, например: write test pts/2. Когда мы нажмем Enter, наше сообщение будет отправлено в его терминал, Ctrl+D, чтобы прервать write.

Для отправки широковещательного сообщения всем подключенным пользователям, используется команда $wall\ (wall=write\ to\ all)$, формат, как у команды write, сообщение будет отправлено после того, как нажмете Ctrl+D (рисунок 19).

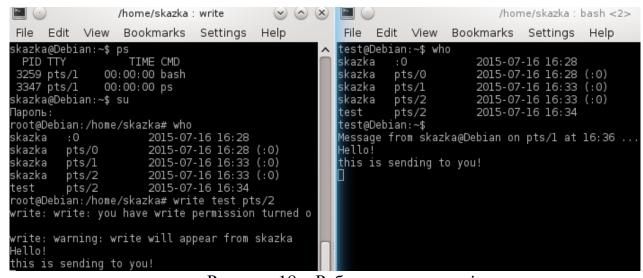


Рисунок 18 – Работа команды *write*

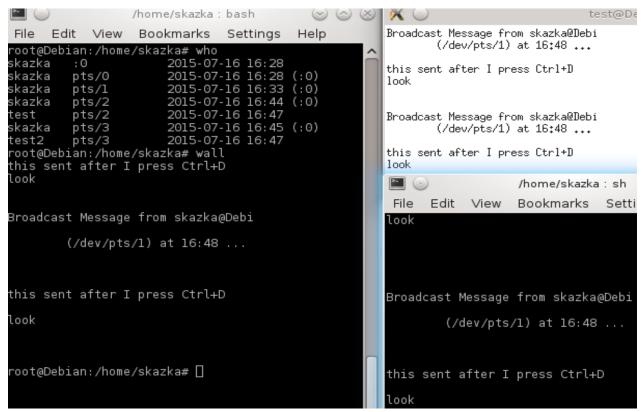


Рисунок 19 – Работа команды wall

Команды write и wall работают при передаче сообщений на терминалы других пользователей. При этом можно также передавать и файлы: $cat\ file.txt$ / $write\ user\ pts/1$ и $cat\ file.txt$ / wall.

Все настройки пользователей и групп хранятся в текстовых файлах:

1) /etc/passwd

Тут хранится вся информация о пользователях, кроме пароля, одна строка соответствует описанию одного пользователя. Содержание строки:

skazka:x:1000:1000:Yekaterina Zuyeva:/home/zuyeva:/bin/bash

Строка состоит из нескольких полей, каждое из которых отделено от другого двоеточием. Значение каждого поля приведено в таблице 2. Второе и последнее поля необязательные и могут не иметь значения.

Таблица 2 – Параметры файла /etc/passwd

	Traparite 1 p. 21 de la company de la compan
Поле	Описание
skazka	Имя пользователя для входа в систему
x	Необязательный зашифрованный пароль
1000	Числовой идентификатор пользователя (UID)
1000	Числовой идентификатор группы (GID)
Yekaterina Zuyeva	Поле комментария
/home/ zuyeva	Домашний каталог пользователя
/bin/bash	Оболочка пользователя

2) /etc/group

Тут хранится информация о группах, записанная в аналогичном с /etc/passwd виде (таблица 3):

skazka:x:1000: skazka,test

В этом файле второе и четвертое поля могут быть пустыми.

Таблица 3 – Параметры файла /etc/group

Поле	Описание
skazka	Название группы
x	Необязательный зашифрованный пароль
1000	Числовой идентификатор группы (GID)
skazka, test	Список пользователей, находящих в группу

3) /etc/shadow

Хранит в себе пароли и поэтому права, установленные на этот файл, не дают считать его обычному пользователю. Значение каждого поля приведено в таблице 4. Пример одной из записей файла:

skazka:\$6\$Yvp9VO2s\$VfI0t.o754QB3HcvVbz5hlOafmO.LaHXwfavJHniHNzq/bCl3 AEo562hhiWLoBSqxLy7RJJNm3fwz.sdhEhHL0:15803:0:99999:7:::

Таблица 4 – Параметры файла /etc/group

Поле	Описание
skazka	Имя пользователя для входа в систему
\$6\$Yvp9VO2s\$VfI0t.o754QB3HcvVbz 5hlOafmO.LaHXwfavJHniHNzq/bCI3 AEo562hhiWLoBSqxLy7RJJNm3fwz.s dhEhHL0	Необязательный зашифрованный пароль
15803	Дата последней смены пароля
0	Минимальный срок действия пароля
99999	Максимальный срок действия пароля
7	Период предупреждения о пароле
предпоследнее поле	Период неактивности пароля
последнее поле	Дата истечения срока действия записи

- 1 Что содержат строка приглашения?
- 2 В каких файлах содержится информация о пользователях?
- 3 Какие команды для передачи на терминалы пользователей?

8 Лабораторная работа №8. Управление сетью. Сетевые службы. Изучение основных команд для работы в сети систем

Цели работы: отработка навыков работы по настройке программного обеспечения по шифрованию файлов и папок, разделов; изучение и конфигурация настроек инструментов настройки и управления сетевыми правилами.

8.1 Рабочее задание

- 1. Выполнить задания по шифрованию файлов, папок, раздела диска:
- 1) В каталоге /home/название_пользователя создать папку Crypt.
- 2) В ней создать 3 файла:
- *file1*-ваша_фамилия.txt (содержимое текущее время и дата);
- *file2*-ваша фамилия.*txt* (содержимое содержимое текущей папки);
- key-ваша_фамилия.txt (пароль при шифровании файлов).
- 3) Зашифровать 2 файла через консоль:
- *file1*-ваша фамилия.*txt* → *file3*-ваша фамилия.*txt.encoded*;
- *file*2-ваша фамилия.txt → file4-ваша фамилия.txt.encoded;
- вывести содержимое папки на экран.
- 4) Расшифровать файлы через консоль:
- file3-ваша_фамилия. $txt.encoded \rightarrow file5$ -ваша_фамилия.txt.decrypt;
- *file4*-ваша фамилия.*txt.encoded* → *file6*-ваша фамилия.*txt.decrypt*;
- вывести содержимое папки на экран;
- сравнить через консоль содержимое file1-ваша_фамилия.txt с file5-ваша_фамилия.txt.decrypt; file2-ваша_фамилия.txt с file6-ваша_фамилия.txt.decrypt.
- 5) Создать внутри папки *Crypt* новую папку *CryptDir*, скопировать в нее файлы *file3*-ваша фамилия.*txt.encoded*, *file6*-ваша фамилия.*txt.decrypt*.
 - 6) Написать про опции сжатия используемой утилиты.
- 7) Скачать любую программу для шифрования папок и зашифровать директорию *CryptDir*; расшифровать и сравнить результаты.
- 8) Скачав любую программу для шифрования дисковых разделов, зашифровать один из своих дисковых разделов.
- 2. Соединить OC1 и OC2 (железо с железом). Настроить между ними сеть тремя способами (с организацией общей папки и без нее):
 - 1) Скопировать из ОС1 в ОС2 зашифрованные 3 файла:
 - file 3-ваша_фамилия.txt.encoded;
 - file4-ваша_фамилия.txt.encoded;
 - key-ваша_фамилия.*txt*.
- 2) Расшифровать в ОС2 полученные *file3* и *file4*. Результаты соединить в один файл *result*-ваша_фамилия.
- 3) Файл *result*-ваша_фамилия скопировать *result2*-ваша_фамилия, дописать в конец использованный ключ для расшифровки.
 - 4) Скопировать из ОС2 в ОС1 файл *result*-ваша_фамилия.

- 5) Настроить правило в файерволе, не позволяющее копировать из OC2 в OC1, проверить это (пытаясь передать файл *result2*-ваша фамилия в OC1).
 - 6) Убрать поставленное правило, проверить работоспособность.
- 3. Соединить ОС1 и ОС2 (виртуальные машины на одном компьютере). Настроить между ними сеть тремя способами (с организацией общей папки и без нее). Проделать пункты 2.1-2.6 аналогично на виртуальных машинах.

8.2 Методические указания к выполнению лабораторной работы

1. С появлением в 2.6-х ядрах низкоуровневого драйвера логических томов - *Device mapper* стала возможной работа не только с петлевыми устройствами, но и непосредственно с дисковыми разделами. Более того, благодаря модульной структуре *Device mapper*, ничто не мешает, комбинируя различные цели, организовать шифрование данных на *RAID*-массиве или создать зашифрованный своп. Цель для *Device mapper*, отвечающая за шифрование данных, называется *dm-crypt*.

Результат шифрования файла с помощью встроенной утилиты, а именно: *OpenSSL* представлен на рисунке 20. Команда в консоли, использованная при шифровании файла *file1-Zuyeva.txt*, находящегося в /home/skazka/Crypt будет следующей:

openssl enc -e -aes-256-cbc -in /home/skazka/Crypt/file1-Zuyeva.txt -out file3-Zuyeva.txt.encoded

После этого пароль вводится 2 раза для шифрования, опция -enc значит, что шифрование идет с помощью алгоритма (AES256); -e указывает на процедуру шифрования; -in указывает входящий файл; -out - выходящий файл.

Для дешифрования команда (параметр -d указывает на дешифровку): openssl enc -d -aes-256-cbc -in /home/skazka/Crypt/file3-Zuyeva.txt.encoded -out file5-Zuyeva.txt.decrypt

Рисунок 20 – Результат шифрования *file1-Zuyeva.txt* с помощью *ssh*

2. Соединение двух компьютеров посредством локальной сети. Способ №1.

Для передачи данных по локальной сети (при соединённом *Ethernet*-кабеле) нужно настроить *IP*-адресацию. В качестве примера использовался *IP*-адрес для сервера 192.168.1.203, с которого был загружен файл *shaika.txt* с зашифрованным содержимым (рисунок 21). Последовательность действий: настраивается *IP*-адрес, с клиента запускается пинг сервера: *ping* 192.168.1.203, пинг проходит успешно, значит устройство включено, и оно в сети.

```
c64 bytes from 192.168.1.203: icmp seq=2 ttl=64 time=0.385 ms
64 bytes from 192.168.1.203: icmp_seq=3 ttl=64 time=0.388 ms
64 bytes from 192.168.1.203: icmp_seq=4 ttl=64 time=0.381 ms
ccc64 bytes from 192.168.1.203: icmp seq=5 ttl=64 time=0.380 ms
--- 192.168.1.203 ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 4000ms
rtt min/avg/max/mdev = 0.380/0.392/0.430/0.031 ms
[root@localhost shaika]# ssh shaikenov@192.168.1.203:/home/shaikenov/shaika.txt
/home/shaika/
ssh: Could not resolve hostname 192.168.1.203:/home/shaikenov/shaika.txt: Name
r service not known
[root@localhost shaika]# scp shaikenov@192.168.1.203:/home/shaikenov/shaika.txt
/home/shaika/
The authenticity of host '192.168.1.203 (192.168.1.203)' can't be established.
ECDSA key fingerprint is SHA256:QotdDIhoPjNnXJo2BZZl3IUCYIWza7Um6Cte3Md8tjg.
ECDSA key fingerprint is MD5:08:19:c8:93:8f:9b:13:eb:f3:6c:7b:5b:45:be:86:bf.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '192.168.1.203' (ECDSA) to the list of known hosts.
shaikenov@192.168.1.203's password:
Permission denied, please try again.
shaikenov@192.168.1.203's password:
                                              100%
                                                            0.0KB/s
                                                                       00:00
shaika.txt
[root@localhost shaika]#
```

Рисунок 21 - Передача между двумя машинами с помощью протокола ssh

Способ №2.

Еще одним способом передачи файлов с одной ОС на другую является реализация *FTP* или TFTP-сервера. В качестве сервера выступает машина с *IP*-адресом 192.168.1.200. Для этой цели нужно скачать утилиту, которая позволяет обращаться к *TFTP*-серверу, например, *WinSCP* (рисунки 22, 23).

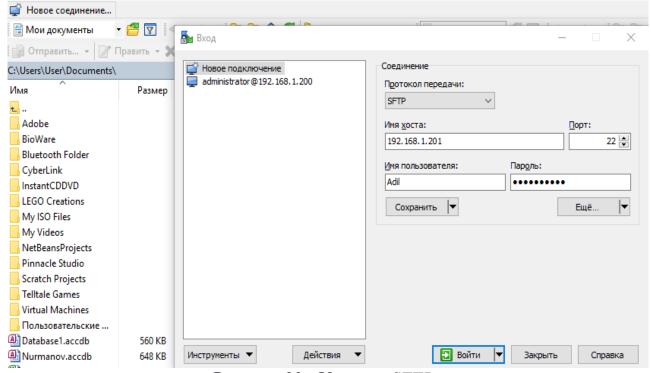


Рисунок 22 - Утилита *SFTP*

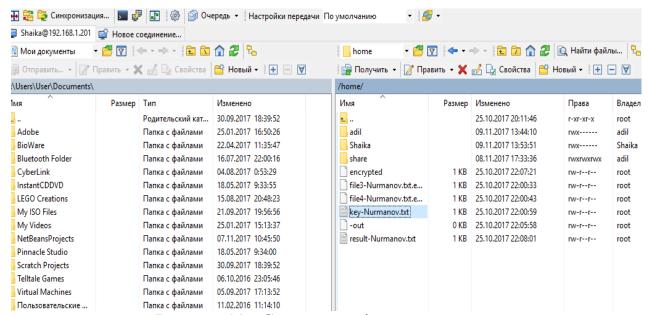


Рисунок 23 - Скачивание файлов с сервера

Способ №3.

Еще одним способом соединения является создание общей папки доступа. Осуществляется это с помощью доступа к папке (данный метод продемонстрирован благодаря возможностям Ubuntu на рисунках 24-25).

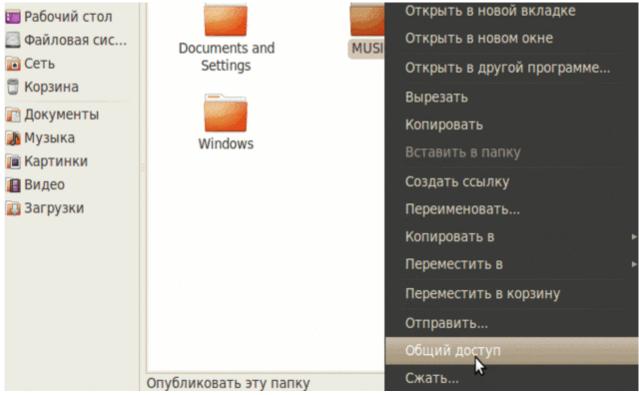
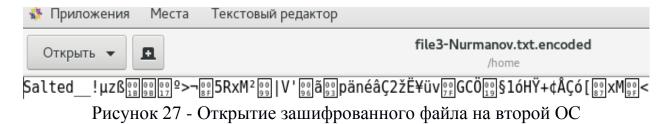


Рисунок 24 - Доступ к папке из локальной сети

🔞 🖨 📵 Общий до	ступ к папке
	Общий доступ к папке
Опубликовать эт	гу папку
Наименование:	Загрузки
Комментарий:	
🗌 Разрешать други	им пользователям изменять содержимое папки
Гостевой доступ	(для пользователей без локальной учётной записи)
	Отменить

Рисунок 25 - Общий доступ к папке

Межсетевой экран, файрвол или брандмауэр - комплекс аппаратных и программных средств в компьютерной сети, осуществляющий контроль и фильтрацию проходящих через него сетевых пакетов в соответствии с заданными правилами.


Во все ядра *Linux*, начиная с 2.0, встроено средство для фильтрации сетевых пакетов. В 2.0 это *ipfwadm*, в 2.2 - *ipchains*, а в 2.4 и 2.6 - *iptables*. Принцип фильтрации такой: когда через ядро проходит пакет, он проверяется на совпадение с одним или несколькими правилами. При этом в зависимости от этих правил он может быть пропущен (ACCEPT), отброшен (DROP) или отклонен (REJECT). Кроме того, он может быть отправлен на проверку в следующую цепочку правил. Здесь же можно указать, что факт прохождения пакета, подходящего под определенное правило, должен быть отмечен в syslog. Правила могут включать в себя проверку адреса. Для изменения используемого набора правил используется программа, которая так и называется - iptables. Все правила хранятся в памяти ядра и при перезагрузке сбрасываются. Поэтому необходимо создать файл конфигурации, из которого правила фильтрации будут считываться при загрузке машины. Обычно это /etc/rc.d/rc.firewall. Это обычный скрипт оболочки, который вызывает /sbin/iptables соответствующими определенными параметрами, большинстве правилам. Поэтому дистрибутивов составленным В изменения конфигурации iptables необходимо отредактировать указанный файл и запустить его (этот файл, как правило, автоматически выполняется при загрузке машины). После чего можно посмотреть обновленную таблицу правил командой iptables -L.

3. Запустим еще одну виртуальную машину. Установим на ней сетевое подключение и адрес пользователя (второй виртуальной машины) 192.168.1.201, а адрес сервера 192.168.1.200. С помощью команды *scp* можно скопировать файл из директории сервера, если известно его местонахождение,

далее прописываем путь и папку, в которую мы хотим сохранить наш файл: scp 192.168.1.200:/home/ nurmanovadil/Crypt/file3-nurmanovadil.txt.encoded /home (результат представлен на рисунке 26). На рисунке 27 открываем файл.

```
The authenticity of host '192.168.1.200 (192.168.1.200)' can't be established
ECDSA key fingerprint is e1:0c:5f:f3:b9:b9:8a:42:cd:e8:83:29:91:6f:f8:20.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '192.168.1.200' (ECDSA) to the list of known hosts
root@192.168.1.200's password:
                                              100%
file3-Nurmanov.txt.encoded
                                                     65
                                                            0.1KB/s
                                                                      00:00
[root@localhost network-scripts]# ls
                               ifup-ib
                                            ifup-Team
ifcfg-enp0s3 ifdown-ppp
ifcfg-lo
              ifdown-routes
                               ifup-ippp
                                            ifup-TeamPort
ifdown
              ifdown-sit
                               ifup-ipv6
                                            ifup-tunnel
ifdown-bnep
              ifdown-Team
                                            ifup-wireless
                               ifup-isdn
              ifdown-TeamPort ifup-plip
                                            init.ipv6-global ↓
ifdown-eth
ifdown-ib
              ifdown-tunnel
                               ifup-plusb
                                            network-functions
ifdown-ippp
              ifup
                               ifup-post
                                            network-functions-ipv6
ifdown-ipv6
              ifup-aliases
                               ifup-ppp
ifdown-isdn
              ifup-bnep
                               ifup-routes
              ifup-eth
ifdown-post
                               ifup-sit
[root@localhost network-scripts]# cd /home/
[root@localhost home]# ls
file3-Nurmanov.txt.encoded
[root@localhost home]# gedit file3-Nurmanov.txt.encoded
```

Рисунок 26 - Копирование файла с сервера

Настройка правила в файерволе, не позволяющее копировать из OC2 в OC1, показана на рисунке 28; проверка на рисунках 29-30.

Убираем поставленное правило, проверяем работоспособность (рисунок 31).

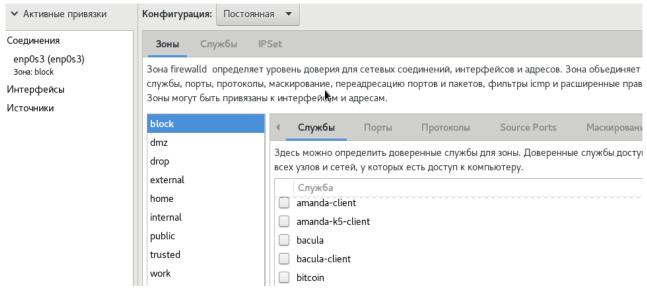


Рисунок 28 - Помещаем интерфейс в блокированную зону

```
[nurmanovadil@localhost Crypt]$ ping 192.168.1.201
PING 192.168.1.201 (192.168.1.201) 56(84) bytes of data.
From 192.168.1.201 icmp_seq=1 Destination Host Prohibited
From 192.168.1.201 icmp_seq=2 Destination Host Prohibited
From 192.168.1.201 icmp_seq=3 Destination Host Prohibited
Pucyнok 29 - Запрещаем трафик
```

[nurmanovadil@localhost Crypt]\$ sudo scp 192.168.1.201:/home/result-Nurmanov.txt
/home/nurmanovadil/Crypt/

[sudo] пароль для nurmanovadil:

ssh: connect to host 192.168.1.201 port 22: No route to host Рисунок 30 - Попытка скопировать файл

```
[nurmanovadil@localhost Crypt]$ ping 192.168.1.201
PING 192.168.1.201 (192.168.1.201) 56(84) bytes of data.
64 bytes from 192.168.1.201: icmp_seq=1 ttl=64 time=0.372 ms
64 bytes from 192.168.1.201: icmp_seq=2 ttl=64 time=0.362 ms
64 bytes from 192.168.1.201: icmp_seq=3 ttl=64 time=0.406 ms
64 bytes from 192.168.1.201: icmp_seq=4 ttl=64 time=0.365 ms
```

Рисунок 31 - Устанавливаем интерфейс на публичный доступ и связь снова доступна

8.3 Список контрольных вопросов

- 1 Какие параметры могут быть еще в *openssl enc*, кроме -aes-256-cbc?
- 2 Каким образом осуществляется настройка правил файервола?
- 3 Назовите 3 способа настройки общего доступа.

9 Лабораторная работа №9. Обеспечение безопасности операционной системы. Изучение программных и системных угроз и типов сетевых атак систем

Цели работы: приобретение навыков по организации безопасности при загрузке в разных режимах ОС; освоение мер деактивации и ограничения пользователей.

9.1 Рабочее задание

- 1. Запустить ОС в минимальном окружении: ядро и командный интерпретатор:
 - 1) перезагрузить систему и войти в меню загрузчика *GRUB2*;
 - 2) изменить параметры запуска ядра;
 - 3) попробовать создать файл «proba.txt» в корневом каталоге;
 - 4) перемонтировать корневой раздел в режиме чтения-записи;
 - 5) попробовать создать файл «proba.txt» в корневом каталоге;
 - 6) загрузиться в обычном режиме.
- 2. Создать учетные записи user1, user2, user3. Отключить учетную запись user1 одним способом, user2 другим способом, user3 третьим, восстановить их работоспособность.
- 3. Показать смену пароля на root-пользователя в ОС через взлом с помощью LiveCD и через взлом загрузчика.

9.2 Методические указания к выполнению лабораторной работы

- 1. Для запуска ОС в минимальном окружении: надо выполнить следующие действия:
 - 1) Перезагрузить систему и войти в меню загрузчика GRUB2.
- 2) Изменить параметры запуска ядра, дописав параметр init=/bin/bash в конец строки параметров ядра (kernel) (рисунок 32). Выполнить загрузку ядра с данным параметром и дождаться приглашения терминала.

```
Setparams 'Debian GNU/Linux, c Linux 3.2.0-4-486'

load_video
insmod gzio
insmod part_msdos
insmod ext2
set root='(hd0,msdos1)'
search --no-floppy --fs-uuid --set=root ad7c6773-b3bc-4493-9d2e-dcef\
6f292f9a
echo 'Загружается Linux 3.2.0-4-486 ...'
linux /boot/vmlinuz-3.2.0-4-486 root=UUID=ad7c6773-b3bc-4493-9d2e-dc\
ef6f292f9a init=/bin/bash
echo 'Загружается начальный ramdisk ...'
initrd /boot/initrd.img-3.2.0-4-486
```

Рисунок 32 – Изменения режима загрузки текущей записи

3) Попробовать создать файл «proba.txt» в корневом каталоге: «touch /proba.txt». Ответом будет комментарий об ошибке о том, что корневая файловая система доступна только для чтения (рисунок 33).

```
Begin: Running /scripts/local-bottom ... done.
done.
Begin: Running /scripts/init-bottom ... done.
[ 1.899498] usb 1-1: New USB device found, idVendor=80ee, idProduct=0021
[ 1.901102] usb 1-1: New USB device strings: Mfr=1, Product=3, SerialNumber=0
[ 1.902065] usb 1-1: Product: USB Tablet
[ 1.902857] usb 1-1: Manufacturer: VirtualBox
bash: cannot set terminal process group (-1): Inappropriate ioctl for device
bash: no job control in this shell
root@(none):/# touch /proba.txt
touch: cannot touch `/proba.txt': Read-only file system
root@(none):/# ____
```

Рисунок 33 – Сообщение об ошибке

4) Перемонтировать корневой раздел в режиме чтения-записи: *«тоипт -о remount, rw /»*, где *remount, rw -* опции перемонтирования в режим чтения-записи (только для чтения будет *ro - read-only*). А слеш - корневой раздел (рисунок 34).

```
bash: cannot set terminal process group (-1): Inappropriate ioctl for device bash: no job control in this shell root@(none):/# touch proba.txt touch: cannot touch 'proba.txt': Read-only file system root@(none):/# mount -o remount, rw / [ 28.649561] EXT4-fs (sda1): re-mounted. Opts: (null) root@(none):/# _
```

Рисунок 34 – Команда перемонтирования

5) Попробовать создать файл *«proba.txt»* в корневом каталоге: *«touch proba.txt»*. Файл успешно создан (рисунок 35).

```
root@(none):/# touch proba.txt
touch: cannot touch `proba.txt': Read-only file system
root@(none):/# mount -o remount, rw /
     28.6495611 EXT4-fs (sda1): re-mounted. Opts: (null)
root@(none):/# touch /proba.txt
root@(none):/# ls
bin
       etc
                       lib
                                                                               var
                                                     proc
                                                             sbin
                                                                         SUS
                       lost+found
                                                                               omlinuz
boot
                                       opt
                                                     root
                                                             selinux
                                                                         tmp
        initrd.img
                                                     run
                       media
                                       proba.txt
                                                                         usr
root@(none):/#
```

Рисунок 35 - Реакция ОС на команду создания файла *proba.txt*

6) Выполнить команду «exec /sbin/init» для начала нормальной загрузки ОС. Загрузка системы в минимальном окружении может быть полезна в различных случаях, особенно, если происходит восстановление удаленных случайно данных, когда любое воздействие на диск (запись) нежелательны. При желании можно перемонтировать корневой раздел в режиме чтения-записи и продолжить реанимацию системы. Как только операции по

восстановлению-диагностике будут выполнены, можно продолжить нормальную загрузку системы.

2. Способ 1. Редактирование файла /etc/shadow. В данном файле хранятся зашифрованные пароли из /etc/passwd. К примеру, вот так выглядит зашифрованный пароль в файле shadow:

user1:\$6\$KYriHdKR\$Yku3LWgJmomsynpcle9BCA:15711:0:4444:5:::

для отключения аккаунта надо перед зашифрованным паролем добавить символы! или *:

user:!\$6\$KYriHdKR\$Yku3LWgJmomsynpcle9BCA:15711:0:4444:5::: или:

user: *\$6\$KYriHdKR\$Yku3LWgJmomsynpcle9BCA:15711:0:4444:5:::

После чего пользователь user1 не сможет себя авторизовать, так как системе не удастся расшифровать пароль. Чтобы вернуть, надо удалить из файла /etc/shadow символы ! и *, которые добавили раньше.

Способ 2. Оболочка *nologin*. Существует еще способ деактивации аккаунта пользователя - это пользовательская оболочка *nologin*, которая находится по адресу: /usr/sbin/nologin. В файле passwd изменить по примеру: user2:x:1001:1001:Test, User,,:/home/user:/bin/bash

user2:x:1001:1001:Test,User,,:/home/user:/usr/sbin/nologin

После чего пользователь user2 не сможет авторизоваться, несмотря на ввод правильного пароля.

Способ 3. То же самое можно сделать с помощью команды: «usermod -Luser3». Любой метод авторизации, использующий для аутентификации пользователя файл /etc/shadow, больше не будет работать, так как расшифровать пароль будет невозможно: suuser3

Password:

su: Authentication failure

Для активации аккаунта можно ввести команду: «usermod -U user3».

3. Чтобы осуществить взлом с помощью *LiveCD*, необходимо загрузиться с *Live*-диска, подмонтировать корневой раздел, отредактировать /etc/shadow, который состоит из строк, каждая из которых имеет 9 полей разделенных двоеточиями. В первом поле хранится имя пользователя, во втором - хеш пароля. Надо удалить содержимое второго поля нужной строки, сохранить файл, отмонтировать файловую систему, перезагрузиться и, загрузившись с жесткого диска, войти в систему как *root*, без пароля.

9.3 Список контрольных вопросов

- 1 Найти файлы: passwd, group, shadow u gshadow; показать, пояснить.
- 2 Описать алгоритм взлома через *CD*-диск.
- 3 Описать алгоритм взлома через загрузчик.

10 Лабораторная работа №10. Архивирование. Восстановление

Цель работы: приобретение навыков работы с упаковщиком TAR; научиться упаковывать и распаковывать файлы посредством GZIP и BZIP2.

10.1 Рабочее задание

- 1. Выполнить задания по архивированию объектов:
- создать папку, в ней файл с календарем 1-ваша_фамилия.txt; в файл 2-ваша_фамилия.txt записать информацию о работающих пользователях (w); в файл 3-ваша_фамилия.txt записать информацию о запущенных процессах в системе; создать архив 4-ваша_фамилия.tar из файла 1-ваша_фамилия.txt, добавить в него остальные два файла; удалить три файла, оставив в папке только архив; распаковать файлы в текущую папку и на уровень выше, удалить архив, проверить содержимое полученного; показать пример архивирования с исключением объектов;
- создать вторую папку; в ней создать файл 5-ваша_фамилия. *txt* и 6-ваша_фамилия. *txt* (в первом информация о дистрибутиве, во втором информация о пользователе); упаковать содержимое папки в архив *tar*;
- упаковать содержимое папки в архив tar с применением архиватора gzip (или bzip2), сравнить размеры;
- перенести архив во временный каталог, удалить содержимое первоначального каталога; восстановить содержимое из архива;
- установить архиватор *rar*, заархивировать файлы 5-ваша_фамилия. *txt* и 6-ваша_фамилия. *txt* по паролю «123», удалить первоисточник файлов и восстановить из архива файлы.
- 2. Сделать резервную копию системы, показать пример удачного восстановлению из образа системы.

10.2 Методические указания к выполнению лабораторной работы

1. Архиватор нужен для уменьшения размеров файлов, упаковывания каталогов в единые объекты для более быстрой передачи по каналам связи и компактного хранения.

В *Linux* есть три различных метода упаковки: *tar*, *gzip* и *bzip2*. Команды для работы:

tar cf 2.tar 1.txt - создать tar-архив с именем 2.tar, содержащий 1.txt;

tar czf 2.tar.gz 1.txt - создать tar-архив с сжатием Gzip по имени 2.tar.gz;

 $tar\ cjf\ 2.tar.bz21.txt$ - создать tar-архив с сжатием Bzip2 по имени 2.tar.bz;

 $tar \ xf \ 2.tar$ - распаковать архив 2.tar в текущую папку;

tar xzf 2.tar.gz - распаковать tar-архив с Gzip;

tar xjf 2.tar.bz - распаковать tar-архив с Bzip2.

tar --exclude='/home/user/*' -cvzf archive.tar.gz /home/* - архивировать всю директорию /home, но исключить из архива папку /home/user.

После создания и просмотра содержимого файлов посмотрим содержимое каталога (рисунок 36).

```
root@debian:/home/skazka# ((uname -a)>5-Zyueva.txt) & ((id root)>6-Zyueva.txt)
[4] 3547
root@debian:/home/skazka# cat 5-Zyueva.txt & cat 6-Zyueva.txt
[5] 3549
uid=0(root) gid=0(root) группы=0(root)
[4] Done ( ( uname -a ) > 5-Zyueva.txt )
root@debian:/home/skazka# Linux debian 3.2.0-4-486 #1 Debian 3.2.57-3 i686 GNU/
root@debian:/home/skazka# ls -l
итого 8
-rw-r--r-- 1 root root 59 Июл 27 19:24 5-Zyueva.txt
root@debian:/home/skazka# ■
```

Рисунок 36 – Создание и просмотр содержимого файлов

Команда «*xxd -l 100 5-Zyueva.txt*» выводит первые 100 байт файла. Чтобы упаковать все это в архив 7.*tar*, надо воспользоваться одной из команд выше.

Далее посмотреть размер архива: «ls -lh 7.tar», при этом получается, что исходные файлы были даже меньше по размеру, а в архиве стали весить больше, так как сам по себе tar не сжимает файлы, а просто упаковывает их в своего рода контейнер, и уже этот контейнер можно «скормить» утилитам-упаковщикам gzip или bzip2 (их можно использовать в tar, с помощью ключей z и j соответственно).

Сожмём теперь этот файл при помощи *gzip: «gzip 7.tar*». Нетрудно заметить, что к расширению файла теперь припишется *gz* автоматически и размер файла уменьшился (большой уровень сжатия).

Распаковка из резервной копии ведется похоже. Есть тут два пути:

а) последовательный: распакуем архив .gz: (gzip -d 7.tar.gz), ключ (-d) означает (decompress), в папке появился файл (7.tar) прежнего размера. Далее: (tar - xvf 7.tar) - распакует содержимое этого контейнера.

Ввиду большой популярности архиваторов gzip (и bzip2), их поддержка уже включена во многие утилиты. В частности, в tar. Для gzip прибавляется опция z, для bzip2-j;

б) можно обойтись одной командой: «tar -xvzf ~/backup.tar.gz» и декомпрессировать и разжать сразу.

Если архиватор не установлен: «apt-get install rar». Для архивации всех файлов и папок в директории /home/skazka/lab9/z1-5 и директории /home/skazka/lab9/z1-3 надо использовать «rar a -r -m5 myarchive.rar /home/skazka/lab9/z1-5/* /home/skazka/lab9/z1-3/*», где «-a» - добавить данные (add); «-m5» - степень сжатия от 0 до 5. 0 - без сжатия; myarchive.rar - имя архива; остальное - архивируемые директории через пробел; «-r» - опция, которая добавляет информацию для восстановления. Опция «-hp» позволяет задать пароль на архив.

Распаковать архив: «rar e myarchive.rar» в текущую директорию, проверить архив: «rar t myarchive.rar»; восстановить «rar myarchive.rar».

2. Резервное копирование системы (backup) является одной из важных профилактических мер по поддержанию стабильности работы системы. Для резервного копирования понадобится утилита по работе с архивами – tar.

Для выполнения задания потребуется флеш-*LiveCD*, с которого ставили систему, и раздел, на который нужно сохранить данные. Его также нужно примонтировать.

Итак, предположим, что ОС установлена на первом разделе первого жесткого диска (/dev/sda1). Загружаемся с LiveCD и монтируем этот раздел скажем в /mnt, проверяя попутно разделы компьютера (рисунок 37).

```
cali:~# mount /dev/sda1 /mnt
     kali:~# fdisk -l
Disk /dev/sda: 20 GiB, 21474836480 bytes, 41943040 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos
Disk identifier: 0x0d3d7496
Device
            Boot
                     Start
                                 End Sectors
                                               Size Id Type
/dev/sda1 *
                     2048 40038399 40036352 19.1G 83 Linux
                 40038400 41940991 1902592
/dev/sda2
                                                929M 82 Linux swap / Solaris
Disk /dev/sdb: 931.5 GiB, 1000204885504 bytes, 1953525167 sectors Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos
Disk identifier: 0xa4b57300
Device
            Boot
                                     End
                                             Sectors
                                                        Size Id Type
                       16065 1953520064 1953504000 931.5G
                                                               f W95 Ext'd (LBA)
/dev/sdb1
/dev/sdb5
                       16128 1538882414 1538866287 733.8G b W95 FAT32
```

Рисунок 37 – Монтирование и просмотр разделов

Монтируем раздел, на котором предполагается разместить резервную копию. При возникновении ошибок следует отмонтировать раздел и обратно примонтировать (рисунок 38). Далее переходим в директорию примонтированного раздела с системой и смотрим какие директории есть, в примонтированной директории будем создавать резервную копию (рисунок 39). Увидев список директорий, включаем нужные для резервной копии (рисунок 40). Процесс создания резервной копии отражен на рисунке 41.

```
root@kali:~# mkdir /backup
root@kali:~# mount /dev/sdb6 /backup
Mount is denied because the NTFS volume is already exclusively opened.
The volume may be already mounted, or another software may use it which could be identified for example by the help of the 'fuser' command.
root@kali:~# umount /dev/sdb6
root@kali:~# mount /dev/sdb6 /backup
```

Рисунок 38 – Монтирование раздела для *backup*

```
t@kali:~# cd /mnt
    (ali:/mnt# ls -a
                                        lost+found
               bin
                       home
                                                     proc
                                                            sys
                       initrd.img
               boot
                                        media
                                                     root
                       initrd.img.old
               .cache
                                        mnt
                                                     run
                                                            usr
                       lib
               dev
                                        opt
                                                     sbin
                                                            var
bash history
                       lib64
                                                            vmlinuz
               etc
                                        proba.txt
```

Рисунок 39 – Системные директории

```
root@kali:/mnt# tar -cvjpf /backup/Backup.tar.bz2 bin boot dev
2 lib64 media mnt opt proc root sbin sys tmp usr var
Рисунок 40 - Команда для создания архива
```

```
bin/fuser
bin/vdir
bin/ntfssecaudit
bin/mv
bin/ping
bin/dmesg
bin/nisdomainname
boot/
```

Рисунок 41 – Процесс создания резервной копии

Для успешного восстановления понадобится все тот же LiveCD, сама резервная копия и некоторое количество времени. Загружаемся с LiveCD и монтируем разделы по уже вышеописанной схеме. Если не переносили резервную копию на другой жесткий диск, то имеющуюся систему нужно предварительно удалить командой: rm - rf / mnt/*. Копируем архив с резервной копией на целевой раздел: cp / backup/Backup.tar.bz2 / mnt/. Переходим в нашу будущую систему и разархивируем backup (процесс показан на рисунке 42). На этом восстановление резервной копии завершено.

```
root@kali:/mnt# tar -xvjpf Backup.tar.bz2
bin/
bin/ntfsinfo
bin/df
bin/loginctl
```

Рисунок 42 – Восстановление системы

10.3 Список контрольных вопросов

- 1 С какими типами файлов-архивов можно работать?
- 2 Зачем делать бэкап системы?
- 3 Расскажите про способы резервного копирования.

11 Лабораторная работа №11. Реализация простых сценариев

Цель работы: приобретение навыков работы по настройке работы ОС путем программирования несложных скриптов.

11.1 Рабочее задание

- 1. Задать постоянные алиасы в системе.
- 2. Написать и запустить скрипты, задействовав разные цвета и заливки:
- вывести на дисплей информацию обо всех разделах, смонтированных в системе в понятном для человека виде и записать ее в файл, создать к получившемуся файлу все виды ссылок;
- показать содержимое текущей папки, создать файл (с текущей датой и времемен работы системы), вывести информацию об атрибутах файла, поменять их, просмотреть файл с его атрибутами и удалить файл, показать опять содержимое директории;
- посчитать количество букв в строке; найти любую последовательность букв; посчитать количество символов текущего скрипта;
 - посчитать количество строк в файле;
- показать содержимое текущего скрипта, скопировать содержимое, очистить его и переписать его заново;
 - вывести в скрипте значения системных переменных;
 - привести пример расчета арифметических операций;
 - привести пример ожидания чтения с клавиатуры;
 - привести пример работы с координатами;
 - показать работу команд для папок и файлов;
- привести пример работы скрипта с пятью переменными и чтением с клавиатуры;
- запустить 3 скрипта одновременно в одном скрипте и вывести сообщения.
 - 3) На автозагрузку в системе поставить любую задачу.
- 4) Поставить скрипт на загрузку в определенное время (например, скрипт запуска любой службы в системе) через планировщика.

11.2 Методические указания к выполнению лабораторной работы

1. Команда *alias* позволяет пользователю создавать простые псевдонимы для команд любой сложности (вместе с опциями, аргументами, перенаправлениями и программными каналами). Псевдонимами заменяются команды или группы команд, которые долго или неудобно набирать на клавиатуре, их применение ускоряет и упрощает работу в командной строке.

Но особенность такова, что если алиясы были заданы через командную строку, то они действительны для текущей сессии текущего пользователя, после выхода или перезагрузки они исчезнут.

Для того чтобы они были действительны навсегда, рекомендуется записать их в файл *bashrc* (для удобства их можно записать в конец файла).

Универсальным является метод с использованием файла bashrc. Сначала нужно проверить наличие файла bashrc в системе: «locate bashrc». В зависимости от наличия файлов типа bashrc (.bashrc, bash.bashrc и т.п.) в различных директориях, возможно несколько вариантов:

а) чтобы создать постоянные псевдонимы для данного пользователя, если в домашней директории есть файл .bashrc (скрытый), то нужно просто вписать в конец этого файла нужные псевдонимы по одному на строку.

Например:

alias c='clear'

alias grep='grep --color'

и так далее, а если в домашней директории не имеется файла .bashrc, то нужно создать текстовый файл вписать туда нужные псевдонимы как показано выше. Заработают созданные псевдонимы после перезагрузки;

- б) чтобы создать постоянные псевдонимы для пользователя *root*: если существует файл /*root*/.*bashrc* (скрытый), то вписать нужные псевдонимы в этот файл. Если такового файла нет, то следует создать его и вписать псевдонимы. А вписав новые псевдонимы, не забудьте перезагрузиться. Заработают созданные псевдонимы после перезагрузки;
- в) /etc/bash.bashrc (если используется оболочка bash). Все то же самое как и описано выше.

Команда *alias* необычна тем, что имеет всего одну опцию -p, чтобы «одним махом» создать псевдоним и просмотреть список уже созданных. Например: «alias - p p = 'pwd'» показывает созданные алиасы до этого момента и создает при этом следующий (не показывая его в общем списке).

Чтобы изменить поведение команды, по умолчанию, например, введя псевдоним: « $alias\ ls='ls-a'$ », можно быть уверенным, что команда ls покажет также скрытые файлы, чего по умолчанию, она не делает.

Если взять команду df, которая выводит информацию обо всех разделах, смонтированных в системе, то можно увидеть, что информация не совсем доходчива, так как единицей размера раздела, по умолчанию, выбран однокилобайтный блок (это тянется с тех дней, когда килобайт считался большим количеством). Существует опция -h, которая использует в качестве единиц размера мегабайты и гигабайты, это намного нагляднее, поэтому имеет смысл ввести псевдоним (alias df = 'df - h')».

Полезным также будет псевдоним «alias grep='grep -color'», который сделает вывод команды grep цветным (рисунок 43).

```
skazka@debian:/etc$ grep 'l' l
Июль 2015
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31
skazka@debian:/etc$ alias grep='grep --color'
skazka@debian:/etc$ grep 'l' l
Июль 2015
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31
```

Рисунок 43 – Изменение параметров вывода команды через алиас

Чтобы избежать последствий неправильного набора команд, например, если пользователь постоянно ошибается и постоянно печатает pdw вместо pwd, он может создать псевдоним: « $alias\ pdw='pwd'$ » и больше не задумываться о том, правильно ли он ввел команду.

Чтобы повысить безопасность системы, сделав некоторые «опасные» команды интерактивными: это заставит пользователя подтверждать свои действия. Например, команда rm удаляет файлы и директории без возможности восстановления, поэтому имеет смысл создать для нее псевдоним: « $alias\ rm='rm\ -i'$ ». В интерактивном варианте команда не столь опасна. Или взять команду cp, копирующую содержимое одного файла в другой. Если по ошибке указать в качестве аргумента существующий файл, то команда сотрет его содержимое и перезапишет новым. Избежать этого поможет псевдоним: « $alias\ cp='cp\ -i'$ », который заставит подтвердить операцию копирования, снизив тем самым риск ошибки.

Удаление псевдонимов: «unalias имя_псевдонима», эта команда удаляет не только созданные для текущей сессии псевдонимы, но и постоянные, прописанные в конфигурационном файле. Опция «-а» позволяет удалить все псевдонимы для данного пользователя и данной сессии: «unalias -a».

2. Хорошей идеей было бы создать директорию \sim /scripts, в которой будут находиться все скрипты. Взаимодействие с командным интерпретатором Shell осуществляется с помощью командной строки. Командный файл или скрипт содержит одну или несколько выполняемых команд или процедур. Скрипт целесообразно делать, когда используется одна и та же последовательность команд, записав которую можно вызывать на выполнение многократно. По правилам хорошего тона программирования в ОС скрипт должен иметь расширение sh, чтобы люди отличали простые файлы от исполняемых, но это правило не всегда используется.

Если скрипты в ОС не запускаются, и система выдает ошибку, то необходимо проверить в файле /etc/fstab напротив нужного раздела системы, стоит ли параметр ехес к файлам (исполняемость файлов). Перед написанием скрипта стоит зайти в /bin и посмотреть, какая оболочка установлена (команда

 $\langle find *sh* \rangle$), в дальнейшем, например, будем пользоваться bash. Работа со скриптами ведется через терминал.

Алгоритм создания скрипта:

- в нужной папке создать файл и заполнить его привычным для скрипта содержанием командами, начиная с указания компилятора (в нашем случае это bash);
 - изменить права к файлу-скрипту: добавить x исполняемость;
 - запустить файл в терминале.

Напишем несколько скриптов.

Пример 1. Вывести в сообщении название скрипта и его автора, календарь, просмотреть текущую директорию.

Выбираем папку, например, /home, заходим, создаем (cat>primer1.sh) с содержимым, представленным на рисунке 44а, при этом учитывать надо, что «#» - решетка с пробелом это комментарий; а без пробела - системный символ. Готовый файл нужно сделать запускаемым в терминале (chmod~777~primer1.sh). Запустить на выполнение: «./1.sh» или «bash~primer1.sh» (результат представлен на рисунке 44б).

```
File Edit View Bookmarks Settings Help

GNU nano 2.2.6 Файл

#!/bin/bash
echo "
echo "| this my first script, author is Zuyeva E.A. |"
echo "
cal
ls -l
echo "Final"
```

```
skazka@debian:~$ bash primerl.sh

| this my first script, author is Zuyeva E.A. |

Июль 2015
Вс Пн Вт Ср Чт Пт Сб

1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31

итого 4
-гw-г--г- 1 skazka skazka 199 Июл 29 15:58 primerl.sh
Final

5) skazka@debian:~$ ■
```

а) листинг; б) выполнение скрипта. Рисунок 44

Пример 2. Написать скрипт, выводящий текущую дату, создать файл и показать атрибуты этого файла до и после их смены.

Через консоль создаем файл (primer2.sh), в который пишем: #!/bin/bash

date
touch file_for_primer2.txt
echo "byl sozdan fail, vot ego prava:"
ls —l file_for_primer2.txt
chmod 777 file_for_primer2.txt
echo "a vot prava posle izmenenii:"
ls -l file_for_primer2.txt

Файл в консоле primer2.sh сделать испоняемым «chmod primer2.sh».

Запустить на выполнение: ./primer2.sh или bash primer2.sh.

Для обозначения переменных используются правила:

- последовательность букв, цифр и символов подчеркивания;
- переменные не могут начинаться с цифры;
- присваивание значений проводится с использованием «=», например, PS2 = '<';
- для обращения к значению переменной перед ее именем ставится знак \$.

Переменные можно разделить на следующие группы:

- позиционные переменные вида \$n, где n целое число;
- простые переменные, значения которых может задавать пользователь или они могут устанавливаться интерпретатором;
- специальные переменные #? -! \$ устанавливаются интерпретатором и позволяют получить информацию о числе позиционных переменных, коде завершения последней команды, идентификационном номере текущего и фонового процессов, о текущих флагах интерпретатора Shell.

Пример 3. Переменной х присвоить значение переменной z. Листинг:

z = 1000

 $x = S_z$

echo \$x

Пример 4. Присвоить переменным x, y, z значения 10, 100, 200, вывести x2, y2, z2 (x2=x, y2=y, z2=z):

x=10; y=100; z=200

x2=\$x && y2=\$y && z2=\$z

echo x2=\$x2, y2=\$y2, z2=\$z2

Пример 5. Подсчет числа символов в цепочках символов. Операция выполняется с использованием функции length в команде expr, а expr находится на клавише с буквой expr «expr»:

x="The program is written"

 $y=\ expr\ length\ "$x"$

echo \$v

Пример 6. Вывод сообщения и считывание информации с клавиатуры:

echo -n "Please write down your name:"

read x

echo x=\$x

Переменные начинаются с символа \$. Чтобы выполнить команду и присвоить вывод переменной, нужно заключить команду в апострофы («`»). Сравните вывод двух скриптов:

```
#!/bin/bash
x=ls $$ echo $x
и
#!/bin/sh
x=`ls` $$ echo $x
```

Чтобы обратиться к системным значениям, надо знать информацию:

- \$*UID* содержит идентификатор, который устанавливается при логине;
- \$GROUPS группы, к которым принадлежит текущий пользователь;
- \$*HOME* домашний каталог пользователя;
- \$HOSTNAME hostname компьютера;
- \$*HOSTTYPE* архитектура машины;
- \$PWD рабочий каталог;
- \$*OSTYPE* тип OC;
- \$РАТН путь поиска программ;
- \$РРІО идентификатор родительского процесса;
- \$SECONDS время работы скрипта (в секундах);
- \$# общее количество параметров, переданных скрипту;
- \$* все аргументы, переданные скрипту (выводятся в строку);
- \$@ то же, что и предыдущий, но параметры выводятся в столбик;
- \$! *PID* последнего запущенного в фоне процесса;
- \$\$ PID самого скрипта.

В таблице 5 даны листинги скриптов и результат их выполнения.

Таблица 5 – Листинги скриптов с выполнением

Листинг	Результат выполнения
вывод на экран #!/bin/bash echo "Hello World"	Hello World
вывод на экран через переменную #!/bin/bash peremennaya="HELLO WORLD!!!" echo \$peremennaya	HELLO WORLD!!!
глобальные и локальные переменные #!/bin/bash VAR="global variable" function bash { local VAR="local variable" echo \$VAR } echo \$VAR bash echo \$VAR	global variable local variable global variable

выполнение в скрипте команд оболочки #!/bin/bash echo `uname -o` echo uname -o	GNU/Linux uname -o
чтение/ввод переменных #!/bin/bash echo -e "Type 1 word: \c " read a echo "The word you entered is: \$a" echo -e "Enter two words: " read b c echo "Here is your input: \"\$b\" \"\$c\"" echo "How do you feel about bash scripting? " read echo "You said \$REPLY, I'm glad to hear that! " echo "What are your favorite colours (3 colors)?" read -a colours echo "My favorite colours are also \${colours[0]}, \${colours[1]} and \${colours[2]}:-)"	Type 1 word: eferfref The word you entered is: eferfref Enter two words: rvreverfvefverver rv Here is your input: "rvreverfvefverver" "rv" How do you feel about bash scripting? fevfeverver You said fevfeverver, I'm glad to hear that! What are your favorite colours (3 colors)? e3 4 4 My favorite colours are also e3, 4 and 4:-)
арифметические операции a=7 b=7 r=\$((\$a + \$b)) echo \$r echo r=\$((\${a} + \${b})) echo \$r	14 14
координаты #!/bin/bash echo -en "\E[3;3f Hello, world!" #курсора координаты (3;3), а затем выведен текст	Hello, world!
временное ожидание ввода #!/bin/bash echo "I waiting you: print me 2 simbols now" read -n 2 В echo echo "I waiting you: print me 3 simbols during 5 sec" read -t 5 -n 3 В	I waiting you: print me 2 simbols now df I waiting you: print me 3 simbols during 5 sec dff
работа с объектами, аналог ls -l для .txt файлов в текущей папке #!/bin/bash ls -l grep "\.txt\$" далее уже не в файле, а в консоле alias z="bash 1"	-rwxr-xr-x 1 root root 35 Mar 15 18:58 1.txt -rwxr-xr-x 1 root root 35 Mar 15 18:58 2.txt

- 3. Организация автозагрузки. Чтобы правильно запустить/остановить сервис, необходимо описать сценарий с командами для запуска/остановки. Содержимое каталога /etc/init.d содержит скрипты, которые управляют загрузками/остановками сервисов в ОС. Итак, первый, но не последний пункт успешной настройки наличие скрипта в /etc/init.d. В скрипте не описывается, когда должен выполняться тот или иной сценарий. Он лишь может принимать параметры start, stop, restart и так далее. ОС знает, когда необходимо вызвать скрипт, так как в каталогах хранятся символические ссылки на скрипты из /etc/init.d /etc/rcN.d, где N это цифра от 0 до 6. Что означает каждый каталог:
 - -rc0.d выполнение скрипта при выключении системы;
- -rc1.d выполнение скрипта при запуске системы в однопользовательском режиме;
- -rc2.d выполнение скрипта при запуске системы в многопользовательском режиме;
 - *rc3.d rc5.d -* зарезервировано;
 - *rc6.d* выполнение скрипта при перезагрузке системы.

Например, если происходит перезагрузка, то будут выполнены все скрипты из каталога /etc/rc6.d, при выключении из /etc/rc0.d и так далее. Цифра в названии каталога называется уровнем запуска, т.е. есть каталог /etc/rc0.d будет называться нулевым уровнем запуска и так далее. Есть очередность выполнения скриптов из каталогов rcN.d. Ведь для правильной организации запуска/остановки работы может потребоваться запускать/останавливать сервисы в определенном порядке. Этот момент решается специальным именованием файлов в каталогах уровней запуска. Файлы имеют следующие имена: [S/K]NN[имя], где [S/K] - это один символ («S» означает, что скрипт запускает сервис, «K» – останавливает), NN – порядковый номер, [имя] – имя файла. Символ «S» или «K» самостоятельно выбирать не придется, так как все скрипты в каталогах rc1.d-rc5.d должны начинаться с символа «S», а в каталогах rc0.d и rc6.d — с символа «K». Число «NN» определяет очередность запуска скриптов, который производится от меньшего к большему. Чем меньше число у скрипта для запуска, тем раньше он будет запущен при старте системы; чем больше число у скрипта остановки сервиса, тем позже он будет выполнен.

При необходимости запуска какой-либо службы или приложения до или после конкретного существующего сервиса надо посмотреть его порядковый номер в соответствующей директории rcN.d и учитывать при выборе порядкового номера для своего скрипта.

В каталоге /etc/init.d находится пример скрипта для управления запуском/остановкой сервисов. Это файл /etc/init.d/skeleton, а в примере ниже он будет упрощен. Для создания нового скрипта необходимо сделать копию примера и отредактировать его. Далее надо воспользоваться командой: «sudo cp /etc/init.d/skeleton /etc/init.d/myscript && vi /etc/init.d/myscript». При создании нового скрипта надо дать ему права на выполнение: «chmod +x /etc/init.d/myscript».

Можно воспользоваться специализированной утилитой *update-rc.d*, с её помощью можно добавить новый скрипт в любой уровень загрузки, удалить существующий и так далее. Вот пример использования: «*sudo update-rc.d myscript start 99 2 3 4 5 . stop 01 0 1 6*» - добавит новый скрипт «myscript» во все уровни загрузки. Будет выполнен запуск сервиса на уровнях со 2 по 5 с приоритетом 99 (в последнюю очередь) и остановка сервиса на 0, 1 и 6 уровнях с приоритетом 01 (самым первым). Чтобы удалить скрипт из автозагрузки: «*sudo update-rc.d -f myscript remove*».

4. Cron - планировщик Linux, он выполняет задания по расписанию.

CronTab — утилита, позволяющая автоматически запускать программы в определенное время, в том числе и периодически, например, раз в час, каждую пятницу и т.д.

Структура файла с заданиями для *CronTab*:

* * * * * command

command - запускаемая программа или скрипт; значок * задаёт параметр (день, год, месяц, час).

Пример:

01 * * * * * xclock - запуск программы xclock каждый час в одну минуту.

0 6 * * * script - запуск скрипта каждый день в 6 часов утра.

Значения могут быть числом, трехбуквенным названием, а также диапазоном, например, запись «1-5» в поле day будет означать «с понедельника по пятницу». Значения могут отделяться запятыми: «1,15,31» в поле day будет запускать указанную команду 1-го, 15-го и 31-го числа каждого месяца.

Все пять полей времени допускают использование символа «*», который обозначает «использовать любое допустимое значение» для этого поля.

Для создания задания можно использовать команды:

- crontab -e изменит crontab файл или создаст новый;
- crontab -l отобразит содержимое существующего crontab файла;
- crontab -r удалит crontab файл;
- crontab -v отображает когда в последний раз изменяли свой crontab.

11.3 Список контрольных вопросов

- 1 Что такое «скрипт» и для чего он создается?
- 2 Как запустить скрипт по времени?

12 Лабораторная работа №12. Реализация сложных сценариев

Цель работы: приобретение навыков работы по настройке работы ОС путем программирования сложных скриптов разных структур.

12.1 Рабочее задание

Написать и запустить скрипты:

- показать работу арифметического сравнения;
- показать работу по чтению из файлов, сравнения количества строк;
- вывести в цикле на экран и в файл числа от 10 до 20;
- привести пример работы 2 циклов в 1 скрипте;
- получить системную информацию, вывести на экран и завершить работу скрипта выводом циклического сообщения;
 - с использованием условных команд;
 - с использованием группировки команд;
- с использованием обработки пользовательского ввода и вывода файлов;
- циклический показ с очисткой экрана и выводом календаря текущего месяца;
- вывести на дисплей полную информацию обо всех процессах, найти строки, содержащие последовательность символов «ваша_фамилия», посчитать их и записать их файл;
- в параметрах скрипта передаются две строки. Вывести сообщение о равенстве или неравенстве переданных строк;
- в параметрах при запуске скрипта передаются три целых числа. Вывести максимальное из них;
 - пример работы с массивами;
- считать с клавиатуры целые числа, пока не будет введено четное число, после этого вывести количество считанных чисел;
 - показать группировку операций по работе с файлами и строками;
- создать текстовое меню с четырьмя пунктами. При вводе пользователем номера пункта меню происходит запуск редактора *gedit*, редактора на ваш выбор, браузера *links* или выход из меню;
- запрашивать имя файла, если файл не существует, выводит сообщение об ошибке, но, если файл существует, выводит информацию о файле в формате: имя файла (не включая путь к файлу), тип файла, размер файла, владелец файла, права доступа, дата создания файла;
- работа с архивами, который запрашивает тип действия: разархивировать или заархивировать; для архивации: запрашивает каталог для архивации и имя архива, создаёт архив с этим именем; для распаковки: спрашивает имя файла с архивом и распаковывает его;
- выводит имя текущего каталога и запрашивает первое и второе расширение файлов, находит в текущем каталоге все файлы с первым

расширением и меняет их расширение на второе расширение. Если таких файлов не существует, выводит сообщение об ошибке и начинает сначала;

- работа с паролями, запрашивает имя пользователя; запрашивает тип действия для данного пользователя: заблокировать или разблокировать и блокирует или разблокирует данного пользователя;
- посмотреть список запущенных процессов, дать ответ запущено ли определенное приложение;
- посчитать количество процессов, запущенных пользователем user, и вывести в файл пары *PID*:команда для таких процессов;
- скрипт, по результату выполнения которого может возникнуть принскрин, представленный на рисунке 45.

```
Выберите оценку которую Вы бы поставили???

0) 0 баллов|50-54 процентов|удов

1) 1 балл|54-59 процентов|удов

2) 2 балла|60-64 процентов|удов

3) 3 балла|65-69 процентов|удов

4) 4 балла|70-74 процентов|удов

5) 5 баллов|75-79 процентов|хор

6) 6 баллов|80-84 процентов|хор

7) 7 баллов|85-89 процентов|хор

8) 8 баллов|90-94 процентов|отл

9) 9 баллов|95-100 процентов|отл

10) АВТОМАТ

5
Вы выбрали 5 хор
```

Рисунок 45 – Принскрин результата работы скрипта

12.2 Методические указания к выполнению лабораторной работы

Пример 1. Организовать циклический показ информации по процессам и очистку экрана (Ctrl+Z-выход):

```
while clear
do
ps -a
done
```

Пример 2. Организовать циклический просмотр списка файлов и выдачу сообщения (est) при появлении заданного имени (*primer6.sh*) в списке:

```
while Is
do
find primer6.sh && echo est
done
Формат условного оператора if:
```

```
if <ycловие>
then
list1
else
list2
```

Оператор цикла с условием *while true* и *while false*. Команда *while* (пока) формирует циклы, выполняющиеся до тех пор, пока команда *while* определяет значение следующего за ним выражения как *true* или *false*. Формат оператора цикла с условием *while true*:

```
while list1
do
list2
done
```

Здесь list1 и list2 - списки команд. While проверяет код возврата списка команд, стоящих после while, и если его значение равно 0, то выполняется команды, стоящие между do и done.

Оператор цикла с условием while false имеет формат:

```
until list1
do
list2
done
```

В отличие от предыдущего случая условием выполнения команд между do и done является ненулевое значение возврата. Программный цикл может быть размещен внутри другого цикла (вложенный цикл). Оператор break прерывает ближайший к нему цикл. Если в программу ввести оператор break с уровнем 2 (break 2), то это обеспечит выход за пределы двух циклов и завершение программы.

```
Oператор цикла с перечислением for:
  for name in [wordlist]
  do
    list
  done
  где name - переменная;
```

wordlist - последовательность слов;

list - список команд.

Переменная *пате* получает значение первого слова последовательности *wordlist*, после этого выполняется список команд, стоящий между *do* и *done*. Затем пате получает значение второго слова *wordlist* и снова выполняется список *list*. Выполнение прекращается после того, как кончится список *wordlist*.

Для работы с файлами и символами в них существует некая группировка операций:

- команда > файл перенаправление стандартного вывода в файл, содержимое существующего файла удаляется;
- команда >> файл перенаправление стандартного вывода в файл, поток дописывается в конец файла;
- команда1 | команда2 перенаправление стандартного вывода первой команды на стандартный ввод второй команды = образование конвейера команд;
- команда1 \$(команда2) передача вывода команды 2 в качестве параметров при запуске команды 1. Внутри скрипта конструкция \$(команда2) может использоваться, например, для передачи результатов работы команды 2 в параметры цикла *for* ... *in*.

Работа со строками (внутренние команды bash):

- -\${#string} выводит длину строки (string имя переменной);
- \${string:position:length} извлекает \$length символов из \$string, начиная с позиции \$position. Частный случай: \${string:position} извлекает подстроку из \$string, начиная с позиции \$position;
- $\{string\#substring\}$ удаляет самую короткую из найденных подстрок $\{substring \$ в строке $\{string\}$. Поиск ведется с начала строки, $\{substring\}$ регулярное выражение;
- $\{string\#substring\}$ удаляет самую длинную из найденных подстрок $\{substring \$ в строке $\{string\}$. Поиск ведется с начала строки, $\{substring\}$ регулярное выражение;
- \${string/substring/replacement} замещает первое вхождение \$substring строкой \$replacement, \$substring регулярное выражение;
- \${string//substring/replacement} замещает все вхождения \$substring строкой \$replacement, \$substring регулярное выражение.

В таблице 6 даны листинги скриптов и результат их выполнения.

Таблица 6 – Листинги скриптов с выполнением

Листинг	Результат выполнения
циклы for a in `seq 1 5`; do echo "Proshlo \$a sec from Start" sleep 1; done	Proshlo 1 sec from Start Proshlo 2 sec from Start Proshlo 3 sec from Start Proshlo 4 sec from Start Proshlo 5 sec from Start
echo "Final" массивы #!/bin/bash ARRAY=('Pervyi Element' 'Vtoroi' 'Tretii' '4-yi') ELEMENTS=\${#ARRAY[@]} for ((i=0;i<\$ELEMENTS;i++)); do echo \${ARRAY[\${i}]} done	Final Pervyi Element Vtoroi Tretii 4-yi

чтение из файла 1 #!/bin/bash declare -a ARRAY # exec <filename #="" \${#array[@]}="" \${array[@]}="" ((count++))="" 10="" 10<1="" <&10;="" array[\$count]="\$LINE" count="0" do="" done="" echo="" elements:="" exec="" let="" line="" number="" of="" read="" stdin="" while="" в="" закрываем="" клавы="" с="" файл="">&-</filename>	Number of elements: 13 #!/bin/bash declare -a ARRAY # exec <filename #="" \${#array[@]}="" \${array[@]}="" ((count++))="" 10="" 10<1="" <&10;="" array[\$count]="\$LINE" count="0" do="" done="" echo="" elements:="" exec="" let="" line="" number="" of="" read="" stdin="" while="" в="" закрываем="" клавы="" с="" файл="">&-</filename>
условие если-иначе #!/bin/bash a=4 echo "1. Bash" echo "2. Scripting" echo -n "Please choose number [1,2 or 3] " while [\$a -eq 4]; do read a if [\$a -eq 1]; then echo "You have chosen: Bash" else if [\$a -eq 2]; then echo "You have chosen: Scripting" else if [\$a -eq 3]; then echo "You have chosen: Tutorial" else echo "Please make a choice between 1-3!" echo "1. Bash" echo "2. Scripting" echo "3. Tutorial" echo -n "Please choose a word [1,2 or 3]? " a=4 fi fi fi fi fi fi done	1. Bash 2. Scripting 3. Tutorial Please choose number [1,2 or 3] 5 Please make a choice between 1-3! 1. Bash 2. Scripting 3. Tutorial Please choose a word [1,2 or 3]? 3 You have chosen: Tutorial
арфметические сравнения -lt < -gt > -le <= -ge >= -eq == -ne != #!/bin/bash a=2 \$\$ b=2	Both Values are equal

if [\$a -eq \$b]; then echo "Both Values are equal" else echo "Values are NOT equal" fi	
сравнение переменных #!/bin/bash a=2 b=1 if [\$a -eq \$b]; then echo "Both Values are equal" elif [\$a -gt \$b]; then echo "\$a is greater then \$b" else echo "\$b is greater then \$a" fi	2 is greater then 1
символьно-текстовые сравнения — одинаковые != не одинаковые < меньще чем > больше чем -n s1 переменная s1 не пустая -z s1 переменная s1 пустая #!/bin/bash a="Bash" b="Scripting" if [\$a = \$b]; then echo "Both Strings are equal" else echo "Strings are NOT equal" fi	Strings are NOT equal
цикл for #!/bin/bash for f in \$(ls /var/); do echo \$f done или for ((value=1 ; value<5; value++)) do echo "Like it" done	backups cache lib local log mail opt run spool tmp
цикл while #!/bin/bash a=6 while [\$a -gt 0]; do echo Value of count is: \$a let a=a-1 done until цикл #!/bin/bash	Value of count is: 6 Value of count is: 5 Value of count is: 4 Value of count is: 3 Value of count is: 2 Value of count is: 1 Value of count is: 0 Value of count is: 1
a=0	Value of count is: 2

until [\$a -lt 5]; do echo Value of count is: \$a let a=a+1 done	Value of count is: 3 Value of count is: 4 Value of count is: 5
оператор выбора select #!/bin/bash a='Choose one word: ' select b in "linux" "bash" "scripting" "tutorial" do echo "The word you have selected is: \$b" break done exit 0	1) linux 2) bash 3) scripting 4) tutorial #? 2 The word you have selected is: bash
оператор выбора case #!/bin/bash echo "What is your lovely language?" echo "1) bash" echo "2) perl" echo "3) python" echo "4) nothing" read a; case \$a in 1) echo "You selected bash";; 2) echo "You selected perl";; 3) echo "You selected python";; 4) exit esac	What is your lovely language? 1) bash 2) perl 3) python 4) nothing 4 What is your lovely language? 1) bash 2) perl 3) python 4) nothing 3 You selected python
#!/bin/bash echo "Выберите редатор для запуска:" echo "1 Запуск программы папо" echo "2 Запуск программы vi" echo "3 Выход" read а # читаем в \$а со стандартного ввода case \$a in 1) /usr/bin/nano;; # если \$a = 1, то запустить папо 2) /usr/bin/vi;; # если \$a = 2, то запустить vi 3) exit 0;; *) #если введено с клавиатуры то, что в саѕе не описывается, выполнять следующее: echo "Введено неправильное действие" esac #окончание оператора case.	Выберите редатор для запуска: 1 Запуск программы nano 2 Запуск программы vi 3 Выход После выбор цифры и нажатия Enter запуститься тот редактор, который вы выбрали (если конечно все пути указаны правильно, и у вас установлены эти редакторы)

12.3 Список контрольных вопросов

- 1 Что такое циклический вывод?
- 2 Как с клавиатуры отследить ввод данных?

Список литературы

Основная

- 1 Таненбаум Эндрю, Бос X. Современные операционные системы 4-е изд. СПб.: Питер, 2015. 1120 с.: ил. (Классика computer science).
- 2 Мэтью Нейл. Основы программирования в Linux: руководство: пер. с англ. / Мэтью Нейл, Стоунс Ричард. 4–е изд. СПб.: БХВ–Петербург, 2009. –896 с.: ил.
- 3 Мэйволд Эрик. Безопасность сетей: Практ. пособие: Самоучитель / Мэйволд Эрик.- М.: СП ЭКОМ: БИНОМ, 2005. 528 с.: ил. (Шаг за шагом)
- 4 Олифер В. Г. Компьютерные сети. Принципы, технологии, протоколы: Учебник для Вузов. / Олифер В. Г., Олифер Н. А.- СПб.: Питер, 2010. 943 с.: ил.
- 5 Басс Лен. Архитектура программного обеспечения на практике: Практ. пособие / Басс Лен, Клементс П., Кацман Р. 2–е изд. СПб.: Питер, 2006. 575 с.: ил. (Классика computer science).
- 6 Гордеев А.В., Молчанов А.Ю. Системное программное обеспечение. СПб.: Питер, 2003. 736 с.: ил.
- 7 Дейтел Харвин М. Операционные системы. Основы и принципы: Пер. с англ. 3-е изд.- М.: БИНОМ, 2006. 1024 с.: ил.
- 8 Олифер В.Г., Олифер Н.А. Сетевые операционные системы. СПб.: Питер, 2009. 672с.: ил.
- 9 Эви Немет, Гарт Снайдер и др. UNIX. Руководство системного администратора. Киев: Вильямс, 2012. 1312 с.
- 10 Курячий Г.В., Маслинский К.А. Операционная система Linux. М.: Интуит.Ру, 2005. 392 с.: ил.
- 11 Безбогов А.А., Мартемьянов Ю. Безопасность операционных систем. изд. Машиностроение-1, $2007.-220~\mathrm{c}$.

Дополнительная

- 12 Курячий Г.В. Операционная система UNIX. М.: Интуит.Ру, 2004. 292 с.: ил.
- 13 Рейчардс К., Фостер-Джонсон Э. UNIX: справочник. СПб.: Питер Ком, 1999. 384 с.: ил.
- 14 Глушаков С.В. и др. Сетевые технологии WINDOWS NT. Харьков: Фолио; М.: ООО «Издательство АСТ», 2001. 501 с.
- 15 Стивенс У. UNIX, взаимодействие процессов. М.: Питер, 2002. 576 с.
- 16 Руссинович М.- Внутреннее устройство Microsoft Windows. Питер, 2013. 800 с.